Hydrogenation without H2 Using a Palladium Membrane Flow Cell

被引:33
|
作者
Jansonius, Ryan P. [1 ]
Kurimoto, Aiko [1 ]
Marelli, Antonio M. [1 ]
Huang, Aoxue [1 ]
Sherbo, Rebecca S. [1 ]
Berlinguette, Curtis P. [1 ,2 ,3 ,4 ]
机构
[1] Univ British Columbia, Dept Chem, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada
[2] Univ British Columbia, Stewart Blusson Quantum Matter Inst, 2355 East Mall, Vancouver, BC V6T 1Z4, Canada
[3] Univ British Columbia, Dept Chem & Biol Engn, 2360 East Mall, Vancouver, BC V6T 1Z3, Canada
[4] Canadian Inst Adv Res CIFAR, 661 Univ Ave, Toronto, ON M5G 1M1, Canada
来源
CELL REPORTS PHYSICAL SCIENCE | 2020年 / 1卷 / 07期
基金
加拿大创新基金会;
关键词
ETHYLENE HYDROGENATION; CATALYSTS; NANOPARTICLES; ELECTROLYSIS; CARBON; ACETYLENE; SYSTEM; WATER;
D O I
10.1016/j.xcrp.2020.100105
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Electrocatalytic palladium membrane reactors (ePMRs) use electricity to hydrogenate organic molecules at ambient temperature and pressure. These benign reaction conditions position ePMRs as a sustainable alternative to thermochemical hydrogenation, which requires high-temperature and high-pressure reaction conditions. However, ePMRs suffer from slow reaction rates and a limited understanding of the factors that govern reaction performance in these devices. In this work, we report the design and validation of an ePMR flow cell. This flow cell increases reaction rates 15-fold and current efficiencies by 30% relative to H-cell reactors. We use this device to reveal that the hydrogen content in the palladium membrane governs the speed and selectivity of hydrogenation reactions, while the amount of hydrogen gas evolved at the palladium surface is deterministic of current efficiency. We contend that this flow cell, which enables hydrogenation without hydrogen gas, is an important step for translating ePMRs into practice.
引用
收藏
页数:12
相关论文
共 50 条
  • [21] Effect of flow arrangement on micro membrane reforming for H2 production from methane
    Assabumrungrat, S. (suttichai.a@chula.ac.th), 1600, Elsevier B.V., Netherlands (293):
  • [22] Aluminium porphyrins catalyse the hydrogenation of CO2 with H2
    Kumar, Nitin
    Gastelu, Gabriela
    Zabransky, Martin
    Kukla, Jaroslav
    Uranga, Jorge G.
    Hulla, Martin
    CHEMICAL SCIENCE, 2024, 15 (48) : 20573 - 20581
  • [23] Optimization of electrode characteristics for the Br2/H2 redox flow cell
    Michael C. Tucker
    Kyu Taek Cho
    Adam Z. Weber
    Guangyu Lin
    Trung Van Nguyen
    Journal of Applied Electrochemistry, 2015, 45 : 11 - 19
  • [24] Optimization of electrode characteristics for the Br2/H2 redox flow cell
    Tucker, Michael C.
    Cho, Kyu Taek
    Weber, Adam Z.
    Lin, Guangyu
    Trung Van Nguyen
    JOURNAL OF APPLIED ELECTROCHEMISTRY, 2015, 45 (01) : 11 - 19
  • [25] Evonik has membrane for H2 electrolysis
    Mccoy, Michael
    CHEMICAL & ENGINEERING NEWS, 2020, 98 (25) : 10 - 10
  • [26] Membrane separators system for H2 recovery
    Karwaszewski, J.
    Wlodarski, B.
    Prace Naukowe Instytutu Technologii Nieorganicznej i Nawozow Mineralnych Poliutechniki Wroclawskiej, 2000, (48): : 204 - 209
  • [27] Indirect H2O2 synthesis without H2
    Fink, Arthur G.
    Delima, Roxanna S.
    Rousseau, Alexandra R.
    Hunt, Camden
    Lesage, Natalie E.
    Huang, Aoxue
    Stolar, Monika
    Berlinguette, Curtis P.
    NATURE COMMUNICATIONS, 2024, 15 (01)
  • [28] Membrane purifies H2 at high pressure
    Freemantle, M
    CHEMICAL & ENGINEERING NEWS, 2006, 84 (06) : 8 - 8
  • [29] Indirect H2O2 synthesis without H2
    Arthur G. Fink
    Roxanna S. Delima
    Alexandra R. Rousseau
    Camden Hunt
    Natalie E. LeSage
    Aoxue Huang
    Monika Stolar
    Curtis P. Berlinguette
    Nature Communications, 15
  • [30] Homolytic H2 dissociation for enhanced hydrogenation catalysis on oxides
    Yang, Chengsheng
    Ma, Sicong
    Liu, Yongmei
    Wang, Lihua
    Yuan, Desheng
    Shao, Wei-Peng
    Zhang, Lunjia
    Yang, Fan
    Lin, Tiejun
    Ding, Hongxin
    He, Heyong
    Liu, Zhi-Pan
    Cao, Yong
    Zhu, Yifeng
    Bao, Xinhe
    NATURE COMMUNICATIONS, 2024, 15 (01)