Sensitivity analysis in Gaussian Bayesian networks using a symbolic-numerical technique

被引:25
|
作者
Castillo, E
Kjærulff, U
机构
[1] Univ Cantabria, Dept Appl Math & Computat Sci, E-39005 Santander, Spain
[2] Aalborg Univ, Dept Comp Sci, DK-9220 Aalborg, Denmark
关键词
sensitivity; Gaussian models; Bayesian networks;
D O I
10.1016/S0951-8320(02)00225-9
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The paper discusses the problem of sensitivity analysis in Gaussian Bayesian networks. The algebraic structure of the conditional means and variances, as rational functions involving linear and quadratic functions of the parameters, are used to simplify the sensitivity analysis. In particular the probabilities of conditional variables exceeding given values and related probabilities are analyzed. Two examples of application are used to illustrate all the concepts and methods. (C) 2002 Elsevier Science Ltd. All rights reserved.
引用
收藏
页码:139 / 148
页数:10
相关论文
共 50 条
  • [31] Component Importance and Sensitivity Analysis in Bayesian Networks
    Zhong, Xiaopin
    Li, Qiu
    PROCEEDINGS OF 2013 INTERNATIONAL CONFERENCE ON QUALITY, RELIABILITY, RISK, MAINTENANCE, AND SAFETY ENGINEERING (QR2MSE), VOLS I-IV, 2013, : 320 - 325
  • [32] SENSITIVITY ANALYSIS FOR PROBABILITY ASSESSMENTS IN BAYESIAN NETWORKS
    BLACKMOND, K
    IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS, 1995, 25 (06): : 901 - 909
  • [33] Efficient global sensitivity analysis of biochemical networks using Gaussian process regression
    Kurdyaeva, Tamara
    Milias-Argeitis, Andreas
    2018 IEEE CONFERENCE ON DECISION AND CONTROL (CDC), 2018, : 2673 - 2678
  • [34] Symbolic-Numerical Algorithms for Solving Elliptic Boundary-Value Problems Using Multivariate Simplex Lagrange Elements
    Gusev, A. A.
    Gerdt, V. P.
    Chuluunbaatar, O.
    Chuluunbaatar, G.
    Vinitsky, S. I.
    Derbov, V. L.
    Gozdz, A.
    Krassovitskiy, P. M.
    COMPUTER ALGEBRA IN SCIENTIFIC COMPUTING, CASC 2018, 2018, 11077 : 197 - 213
  • [35] Sensitivity Analysis of Stroke Predictors Using Structural Equation Modeling and Bayesian Networks
    Oliveira, Helder C. R.
    Yanushkevich, Svetlana
    Almekhlafi, Mohammed
    2022 IEEE CONFERENCE ON COMPUTATIONAL INTELLIGENCE IN BIOINFORMATICS AND COMPUTATIONAL BIOLOGY (IEEE CIBCB 2022), 2022, : 187 - 194
  • [36] Symbolic-numerical method for the stability analysis of difference schemes on the basis of the catastrophe theory (vol 116, pg 26, 1995)
    Vorozhtsov, EV
    Scobelev, BY
    Ganzha, VG
    JOURNAL OF COMPUTATIONAL PHYSICS, 1996, 123 (01) : 231 - 232
  • [37] Numerical sensitivity analysis of HTPB counterflow combustion using neural networks
    Bojko, Brian T.
    Geipel, Clayton M.
    Fisher, Brian T.
    Kessler, David A.
    COMBUSTION AND FLAME, 2025, 271
  • [38] Gaussian Mixture Models for Affordance Learning using Bayesian Networks
    Osorio, Pedro
    Bernardino, Alexandre
    Martinez-Cantin, Ruben
    Santos-Victor, Jose
    IEEE/RSJ 2010 INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS 2010), 2010,
  • [39] Interconnect modeling and sensitivity analysis using adjoint networks reduction technique
    Lee, HJ
    Chu, CC
    Feng, WS
    PROCEEDINGS OF THE 2003 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS, VOL IV: DIGITAL SIGNAL PROCESSING-COMPUTER AIDED NETWORK DESIGN-ADVANCED TECHNOLOGY, 2003, : 648 - 651
  • [40] Global sensitivity analysis of uncertain parameters in Bayesian networks
    Ballester-Ripoll, Rafael
    Leonelli, Manuele
    INTERNATIONAL JOURNAL OF APPROXIMATE REASONING, 2025, 180