The Sub-Supersolution Method and Extremal Solutions of Quasilinear Elliptic Equations in Orlicz-Sobolev Spaces

被引:5
|
作者
Dong, Ge [1 ]
Fang, Xiaochun [2 ]
机构
[1] Shanghai Jian Qiao Univ, Coll Informat Technol, Shanghai 201306, Peoples R China
[2] Tongji Univ, Dept Math, Shanghai 200092, Peoples R China
基金
中国国家自然科学基金;
关键词
PARTIAL-DIFFERENTIAL SYSTEMS; WEAK SOLUTIONS; VARIATIONAL-INEQUALITIES; EXISTENCE THEOREM; OPERATORS;
D O I
10.1155/2018/8104901
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove the existence of extremal solutions of the following quasilinear elliptic problem - Sigma(N)(i=1) (partial derivative/partial derivative(i))a(i)u(x,u)(x), Du(x)) + g(x, u(x), Du(x)) = 0 under Dirichlet boundary condition in Orlicz-Sobolev spaces W0LM(Omega) and give the enclosure of solutions. The differential part is driven by a Leray-Lions operator in Orlicz-Sobolev spaces, while the nonlinear term g : Omega x R x R-N -> R is a Caratheodory function satisfying a growth condition. Our approach relies on the method of linear functional analysis theory and the sub-supersolution method.
引用
收藏
页数:7
相关论文
共 50 条
  • [31] Quasilinear elliptic systems with nonstandard growth conditions in Orlicz-Sobolev spaces
    Farah Balaadich
    Elhoussine Azroul
    Afrika Matematika, 2023, 34
  • [32] Multiple solutions for a class of quasilinear problems in Orlicz-Sobolev spaces
    Ait-Mahiout, Karima
    Alves, Claudianor O.
    ASYMPTOTIC ANALYSIS, 2017, 104 (1-2) : 49 - 66
  • [33] QUASILINEAR ELLIPTIC PROBLEMS ON NON-REFLEXIVE ORLICZ-SOBOLEV SPACES
    Silva, Edcarlos D.
    Carvalho, Marcos L. M.
    Silva, Kaye
    Goncalves, Jose, V
    TOPOLOGICAL METHODS IN NONLINEAR ANALYSIS, 2019, 54 (02) : 587 - 612
  • [34] Sub-supersolution Method for Nonlinear Elliptic Equation with non-coercivity in divergentiel form in Orlicz Spaces
    Ahmed, Aberqi
    Jaouad, Bennouna
    Mhamed, Elmassoudi
    2ND INTERNATIONAL CONFERENCE ON APPLIED MATHEMATICS, ICAM'2018, 2019, 2074
  • [35] Multiple solutions for quasilinear elliptic problems with concave-convex nonlinearities in Orlicz-Sobolev spaces
    Wu, Shujun
    BOUNDARY VALUE PROBLEMS, 2019, 2019 (01)
  • [36] $L^{\infty }$-bounds for elliptic equations on Orlicz-Sobolev spaces
    Martin Fuchs
    Li Gongbao
    Archiv der Mathematik, 1999, 72 : 293 - 297
  • [37] SUB-SUPERSOLUTION THEOREMS FOR QUASILINEAR ELLIPTIC PROBLEMS: A VARIATIONAL APPROACH
    Le, V. Y. Khoi
    Schmitt, Klaus
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2004,
  • [38] The sub-supersolution method for weak solutions
    Montenegro, Marcelo
    Ponce, Augusto C.
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2008, 136 (07) : 2429 - 2438
  • [39] Solution for nonvariational quasilinear elliptic systems via sub-supersolution technique and Galerkin method
    Francisco Julio S. A. Corrêa
    Gelson C. G. dos Santos
    Leandro S. Tavares
    Zeitschrift für angewandte Mathematik und Physik, 2021, 72
  • [40] Existence and multiplicity of solutions for a class of quasilinear problems in Orlicz-Sobolev spaces
    Ait-Mahiout, Karima
    Alves, Claudianor O.
    COMPLEX VARIABLES AND ELLIPTIC EQUATIONS, 2017, 62 (06) : 767 - 785