The evaluation of confidence sets with application to binomial intervals

被引:0
|
作者
Edwardes, MDD [1 ]
机构
[1] Royal Victoria Hosp, Div Clin Epidemiol, Montreal, PQ H3A 1A1, Canada
关键词
average coverage; binomial proportion; confidence intervals; continuity correction; coverage; expected volume; expected width; logit; Neyman shortness; selectivity;
D O I
暂无
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
An expected volume coefficient (EV) is defined and proposed to displace volume and selectivity as criteria for the evaluation of confidence sets, and a proposal for evaluation is given. This proposal addresses anomolies that occur with sets based on discrete probability distributions; for example, that classical exact confidence intervals are wider than approximate ones. Options for the other key criterion, coverage, range from attaining average coverage, a liberal (i.e., leading to smaller sets) criterion, to attaining coverage for all values of the unknown parameter and all sample sizes, a very conservative criterion for sets based on discrete distributions. Use of EV is demonstrated with two-sided confidence intervals for the binomial probability parameter? leading to new recommendations; in particular, a Wald logit interval with negative continuity correction.
引用
收藏
页码:393 / 409
页数:17
相关论文
共 50 条
  • [41] Recommended confidence intervals for two independent binomial proportions
    Fagerland, Morten W.
    Lydersen, Stian
    Laake, Petter
    [J]. STATISTICAL METHODS IN MEDICAL RESEARCH, 2015, 24 (02) : 224 - 254
  • [42] The cost of using exact confidence intervals for a binomial proportion
    Thulin, Mans
    [J]. ELECTRONIC JOURNAL OF STATISTICS, 2014, 8 : 817 - 840
  • [43] RMSE-minimizing confidence intervals for the binomial parameter
    Kexin Feng
    Lawrence M. Leemis
    Heather Sasinowska
    [J]. Computational Statistics, 2022, 37 : 1855 - 1885
  • [44] Binomial and Poisson Confidence Intervals and its Variants: A Bibliography
    Khurshid, Anwer
    Ageel, Mohammed I.
    [J]. PAKISTAN JOURNAL OF STATISTICS AND OPERATION RESEARCH, 2010, 6 (01) : 75 - 100
  • [45] Confidence intervals for the binomial parameter: some new considerations
    Reiczigel, J
    [J]. STATISTICS IN MEDICINE, 2003, 22 (04) : 611 - 621
  • [46] APPLICATION OF CONFIDENCE INTERVALS IN THE MULTIPLE CHOICE EVALUATION SYSTEM
    Boronat, T.
    Garcia-Sanoguera, D.
    Sanchez-Nacher, L.
    Fenollar, O.
    Balart, R.
    [J]. INTED2014: 8TH INTERNATIONAL TECHNOLOGY, EDUCATION AND DEVELOPMENT CONFERENCE, 2014, : 4516 - 4518
  • [47] A comparative study of confidence intervals for negative binomial proportion
    Tian, M.
    Tang, M. L.
    Ng, H. K. T.
    Chan, P. S.
    [J]. JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2009, 79 (03) : 241 - 249
  • [48] On split sample and randomized confidence intervals for binomial proportions
    Thulin, Mans
    [J]. STATISTICS & PROBABILITY LETTERS, 2014, 92 : 65 - 71
  • [49] Construction of Confidence Intervals and Regions for Ordered Binomial Probabilities
    Li, Zhiguo
    Taylor, Jeremy M. G.
    Nan, Bin
    [J]. AMERICAN STATISTICIAN, 2010, 64 (04): : 291 - 298
  • [50] Confidence intervals and prediction intervals for two-parameter negative binomial distributions
    Hasan, Md Mahadi
    Krishnamoorthy, K.
    [J]. JOURNAL OF APPLIED STATISTICS, 2024, 51 (12) : 2420 - 2435