Mercury Chalcogenide Quantum Dots: Material Perspective for Device Integration

被引:95
|
作者
Greboval, Charlie [1 ]
Chu, Audrey [1 ]
Goubet, Nicolas [2 ,3 ]
Livache, Clement [1 ]
Ithurria, Sandrine [4 ]
Lhuillier, Emmanuel [1 ]
机构
[1] Sorbonne Univ, Inst NanoSci Paris, INSP, CNRS, F-75005 Paris, France
[2] Sorbonne Univ, MONARIS, CNRS, Lab Mol Nanoobjets, F-75005 Paris, France
[3] Sorbonne Univ, MONARIS, Reactivite Interact & Spect, F-75005 Paris, France
[4] Univ Paris 06, Sorbonne Univ, CNRS UMR 8213, Lab Phys & Etud Mat,ESPCI Paris,PSL Res Univ, F-75005 Paris, France
关键词
COLLOIDAL HGTE NANOCRYSTALS; SCANNING TUNNELING SPECTROSCOPY; AMPLIFIED SPONTANEOUS EMISSION; ULTRAFAST EXCITON DYNAMICS; FIELD-EFFECT TRANSISTORS; ATOMIC LAYER DEPOSITION; FREQUENCY 1/F NOISE; ROOM-TEMPERATURE; INFRARED PHOTODETECTORS; BAND-STRUCTURE;
D O I
10.1021/acs.chemrev.0c01120
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Nanocrystals (NCs) are one of the few nanotechnologies to have attained mass market applications with their use as light sources for displays. This success relies on Cd- and In-based wide bandgap materials. NCs are likely to be employed in more applications as they provide a versatile platform for optoelectronics, specifically, infrared optoelectronics. The existing material technologies in this range of wavelengths are generally not cost-effective, which limits the spread of technologies beyond a few niche domains, such as defense and astronomy. Among the potential candidates to address the infrared window, mercury chalcogenide (HgX) NCs exhibit the highest potential in terms of performance. In this review, we discuss how material developments have facilitated device enhancements. Because these materials are mainly used for their infrared optical features, we first review the strategies for their colloidal growth and their specific electronic structure. The review is organized considering three main device-related applications: light emission, electronic transport, and infrared photodetection.
引用
收藏
页码:3627 / 3700
页数:74
相关论文
共 50 条
  • [31] The dynamic surface chemistry of colloidal metal chalcogenide quantum dots
    Grisorio, Roberto
    Quarta, Danila
    Fiore, Angela
    Carbone, Luigi
    Suranna, Gian Paolo
    Giansante, Carlo
    NANOSCALE ADVANCES, 2019, 1 (09): : 3639 - 3646
  • [32] Tissue distribution of silver chalcogenide quantum dots in mouse model
    Zhang, J. -Z.
    Tang, H.
    Chen, X. -Z.
    Xi, W. -S.
    Su, Q.
    Cao, A.
    Wang, H.
    TOXICOLOGY LETTERS, 2019, 314 : S206 - S206
  • [33] Chemical Reactions Involving the Surface of Metal Chalcogenide Quantum Dots
    Bhandari, Satyapriya
    Roy, Shilaj
    Pramanik, Sabyasachi
    Chattopadhyay, Arun
    LANGMUIR, 2019, 35 (45) : 14399 - 14413
  • [34] Progress in Carbon Dots from the Perspective of Quantum Dots
    Liu Yanhong
    Zhang Dongxu
    Mao Baodong
    Huang Hui
    Liu Yang
    Tan Huaqiao
    Kang Zhenhui
    ACTA CHIMICA SINICA, 2020, 78 (12) : 1349 - 1365
  • [35] Single site-controlled In(Ga)As/GaAs quantum dots: growth, properties and device integration
    Schneider, C.
    Huggenberger, A.
    Suenner, T.
    Heindel, T.
    Strauss, M.
    Goepfert, S.
    Weinmann, P.
    Reitzenstein, S.
    Worschech, L.
    Kamp, M.
    Hoefling, S.
    Forchel, A.
    NANOTECHNOLOGY, 2009, 20 (43)
  • [36] A perspective on bioconjugated nanoparticles and quantum dots
    Huo, Qun
    COLLOIDS AND SURFACES B-BIOINTERFACES, 2007, 59 (01) : 1 - 10
  • [37] Integration of MOSFETs with SiGe dots as stressor material
    Nanver, L. K.
    Jovanovic, V.
    Biasotto, C.
    Moers, J.
    Gruetzmacher, D.
    Zhang, J. J.
    Hrauda, N.
    Stoffel, M.
    Pezzoli, F.
    Schmidt, O. G.
    Miglio, L.
    Kosina, H.
    Marzegalli, A.
    Vastola, G.
    Mussler, G.
    Stangl, J.
    Bauer, G.
    van der Cingel, J.
    Bonera, E.
    SOLID-STATE ELECTRONICS, 2011, 60 (01) : 75 - 83
  • [38] Nano-technology-device prospects: quantum dots and transistors for ultracompact integration and terahertz analogue applications
    Hartnagel, Hans Ludwig
    Conference Proceedings of the International Symposium on Signals, Systems and Electronics, 1998,
  • [39] Advances in carbon dots: from the perspective of traditional quantum dots
    Liu, Yanhong
    Huang, Hui
    Cao, Weijing
    Mao, Baodong
    Liu, Yang
    Kang, Zhenhui
    MATERIALS CHEMISTRY FRONTIERS, 2020, 4 (06) : 1586 - 1613
  • [40] Nano-technology-device prospects: Quantum dots and transistors for ultracompact integration and terahertz analogue applications
    Hartnagel, HL
    1998 URSI SYMPOSIUM ON SIGNALS, SYSTEMS, AND ELECTR ONICS, 1998, : 63 - 63