Functional classification of ornamental stone using machine learning techniques

被引:24
|
作者
Lopez, M. [2 ]
Martinez, J. [1 ]
Matias, J. M. [3 ]
Taboada, J.
Vilan, J. A. [2 ]
机构
[1] Univ Vigo, Dept Environm Engn, Mines Engn Sch, Vigo 36310, Spain
[2] Univ Vigo, Dept Mech Engn, Vigo 36310, Spain
[3] Univ Vigo, Dept Stat, Vigo 36310, Spain
关键词
Approximation and interpolation; Machine learning; Classification; Functional data;
D O I
10.1016/j.cam.2010.01.054
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Automated classification of granite slabs is a key aspect of the automation of processes in the granite transformation sector. This classification task is currently performed manually on the basis of the subjective opinions of an expert in regard to texture and colour. We describe a classification method based on machine learning techniques fed with spectral information for the rock, supplied in the form of discrete values captured by a suitably parameterized spectrophotometer. The machine learning techniques applied in our research take a functional perspective, with the spectral function smoothed in accordance with the data supplied by the spectrophotometer. On the basis of the results obtained, it can be concluded that the proposed method is suitable for automatically classifying ornamental rock. (C) 2010 Elsevier B.V. All rights reserved.
引用
收藏
页码:1338 / 1345
页数:8
相关论文
共 50 条
  • [1] Automatic classification of ornamental stones using Machine Learning techniques A study applied to limestone
    Tereso, Marco
    Rato, Luis
    Goncalves, Teresa
    [J]. 2020 15TH IBERIAN CONFERENCE ON INFORMATION SYSTEMS AND TECHNOLOGIES (CISTI'2020), 2020,
  • [2] Frog classification using machine learning techniques
    Huang, Chenn-Jung
    Yang, Yi-Ju
    Yang, Dian-Xiu
    Chen, You-Jia
    [J]. EXPERT SYSTEMS WITH APPLICATIONS, 2009, 36 (02) : 3737 - 3743
  • [3] Diabetes Classification Using Machine Learning Techniques
    Phongying, Methaporn
    Hiriote, Sasiprapa
    [J]. COMPUTATION, 2023, 11 (05)
  • [4] Classification of Reynolds phytoplankton functional groups using individual traits and machine learning techniques
    Kruk, Carla
    Devercelli, Melina
    Huszar, Vera L. M.
    Hernandez, Esnedy
    Beamud, Guadalupe
    Diaz, Monica
    Silva, Lucia H. S.
    Segura, Angel M.
    [J]. FRESHWATER BIOLOGY, 2017, 62 (10) : 1681 - 1692
  • [5] Apricot Stone Classification Using Image Analysis and Machine Learning
    Ropelewska, Ewa
    Rady, Ahmed M.
    Watson, Nicholas J.
    [J]. SUSTAINABILITY, 2023, 15 (12)
  • [6] An exploration on text classification using machine learning techniques
    Athanasios, Tzimourtas
    Spyros, Bakalakos
    Panagiota, Tselenti
    Athanasios, Voulodimos
    [J]. 25TH PAN-HELLENIC CONFERENCE ON INFORMATICS WITH INTERNATIONAL PARTICIPATION (PCI2021), 2021, : 247 - 249
  • [7] Classification of Sentimental Reviews Using Machine Learning Techniques
    Tripathy, Abinash
    Agrawal, Ankit
    Rath, Santanu Kumar
    [J]. 3RD INTERNATIONAL CONFERENCE ON RECENT TRENDS IN COMPUTING 2015 (ICRTC-2015), 2015, 57 : 821 - 829
  • [8] ONLINE NEWS CLASSIFICATION USING MACHINE LEARNING TECHNIQUES
    Ahmed, Jeelani
    Ahmed, Muqeem
    [J]. IIUM ENGINEERING JOURNAL, 2021, 22 (02): : 210 - 225
  • [9] Classification of yoga pose using machine learning techniques
    Palanimeera, J.
    Ponmozhi, K.
    [J]. MATERIALS TODAY-PROCEEDINGS, 2021, 37 : 2930 - 2933
  • [10] Classification of cardiac arrhythmia using machine learning techniques
    Firyulina, M. A.
    Kashirina, I. L.
    [J]. APPLIED MATHEMATICS, COMPUTATIONAL SCIENCE AND MECHANICS: CURRENT PROBLEMS, 2020, 1479