Blow up solutions for one class of system of Pekar-Choquard type nonlinear Schrodinger equation

被引:14
|
作者
Chen, Jianqing [1 ]
Guo, Boling
机构
[1] Fujian Normal Univ, Dept Math, Fuzhou 350007, Peoples R China
[2] Inst Appl Phys & Computat Math, Beijing 100088, Peoples R China
关键词
Pekar-Choquard type system; blow up; strong instability; stationary solutions;
D O I
10.1016/j.amc.2006.07.089
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove that firstly the existence of stationary solutions of the Pekar-Choquard system with the form i (rho) over right arrow (t) + Delta(rho) over right arrow + K((rho) over right arrow) -- vertical bar(rho) over right arrow vertical bar(p-2)(rho) over right arrow = 0, secondly the solutions of Cauchy problem of (PCs) with initial data close to the stationary solution (in a suitable sense) must blow up at finite time; finally the standing wave relating to the stationary solution of (PCs) is strongly unstable in the sense of Definition 4.2. (c) 2006 Elsevier Inc. All rights reserved.
引用
收藏
页码:83 / 92
页数:10
相关论文
共 50 条