Bright focused ion beam sources based on laser-cooled atoms

被引:40
|
作者
McClelland, J. J. [1 ]
Steele, A. V. [1 ,2 ]
Knuffman, B. [1 ,2 ]
Twedt, K. A. [1 ,3 ,4 ]
Schwarzkopf, A. [1 ,2 ]
Wilson, T. M. [1 ,4 ]
机构
[1] NIST, Ctr Nanoscale Sci & Technol, Gaithersburg, MD 20899 USA
[2] ZeroK NanoTech, Gaithersburg, MD 20878 USA
[3] Univ Maryland, Maryland Nanoctr, College Pk, MD 20742 USA
[4] Sci Syst & Applicat Inc, Lanham, MD 20706 USA
来源
APPLIED PHYSICS REVIEWS | 2016年 / 3卷 / 01期
基金
美国国家科学基金会;
关键词
COHERENCE ELECTRON BUNCHES; MONTE-CARLO CALCULATION; MAGNETOOPTICAL TRAP; LIQUID-METAL; NEUTRAL ATOMS; MASS-SPECTROMETRY; OPTICAL MOLASSES; COLD ATOMS; COULOMB INTERACTIONS; SURFACE-ANALYSIS;
D O I
10.1063/1.4944491
中图分类号
O59 [应用物理学];
学科分类号
摘要
Nanoscale focused ion beams (FIBs) represent one of the most useful tools in nanotechnology, enabling nanofabrication via milling and gas-assisted deposition, microscopy and microanalysis, and selective, spatially resolved doping of materials. Recently, a new type of FIB source has emerged, which uses ionization of laser cooled neutral atoms to produce the ion beam. The extremely cold temperatures attainable with laser cooling (in the range of 100 mu K or below) result in a beam of ions with a very small transverse velocity distribution. This corresponds to a source with extremely high brightness that rivals or may even exceed the brightness of the industry standard Ga+ liquid metal ion source. In this review, we discuss the context of ion beam technology in which these new ion sources can play a role, their principles of operation, and some examples of recent demonstrations. The field is relatively new, so only a few applications have been demonstrated, most notably low energy ion microscopy with Li ions. Nevertheless, a number of promising new approaches have been proposed and/or demonstrated, suggesting that a rapid evolution of this type of source is likely in the near future. (C) 2016 Author(s).
引用
收藏
页数:33
相关论文
共 50 条
  • [31] Making molecules from laser-cooled atoms
    Gabbanini, C
    Fioretti, A
    TRAPPED PARTICLES AND FUNDAMENTAL PHYSICS, 2002, 51 : 181 - 198
  • [32] BIMODAL SPEED DISTRIBUTIONS IN LASER-COOLED ATOMS
    SHEVY, Y
    WEISS, DS
    UNGAR, PJ
    CHU, S
    PHYSICAL REVIEW LETTERS, 1989, 62 (10) : 1118 - 1121
  • [33] ANOMALOUS SCHOTTKY SIGNALS FROM A LASER-COOLED ION-BEAM
    HANGST, JS
    LABRADOR, A
    LEBEDEV, V
    MADSEN, N
    NIELSEN, JS
    POULSEN, O
    SHI, P
    SCHIFFER, JP
    PHYSICAL REVIEW LETTERS, 1995, 74 (01) : 86 - 89
  • [34] ATOMIC PHYSICS - LASER-COOLED ATOMS COOPERATE
    FOOT, C
    STEANE, A
    NATURE, 1990, 344 (6266) : 490 - 491
  • [35] MEASUREMENTS OF COLLISIONS BETWEEN LASER-COOLED ATOMS
    Walker, Thad
    Feng, Paul
    ADVANCES IN ATOMIC MOLECULAR AND OPTICAL PHYSICS <D>, 1994, 34 : 125 - 170
  • [36] Photoassociation spectroscopy of laser-cooled ytterbium atoms
    Takasu, Y
    Komori, K
    Honda, K
    Kumakura, M
    Yabuzaki, T
    Takahashi, Y
    PHYSICAL REVIEW LETTERS, 2004, 93 (12) : 123202 - 1
  • [37] Magnetostatic optical elements for laser-cooled atoms
    Sidorov, AI
    Lau, DC
    Opat, GI
    McLean, RJ
    Rowlands, WJ
    Hannaford, P
    LASER PHYSICS, 1998, 8 (03) : 642 - 648
  • [38] High-Coherence Electron and Ion Bunches from Laser-Cooled Atoms
    McCulloch, A. J.
    Sheludko, D. V.
    Putkunz, C. T.
    Saliba, S. D.
    Thompson, D. J.
    Speirs, R. W.
    Murphy, D.
    Torrance, J.
    Sparkes, B. M.
    Scholten, R. E.
    XXVIII INTERNATIONAL CONFERENCE ON PHOTONIC, ELECTRONIC AND ATOMIC COLLISIONS (ICPEAC), 2014, 488
  • [39] Laser-cooled ions and atoms in a storage ring
    Kleinert, J
    Hannemann, S
    Eike, B
    Eisenbarth, U
    Grieser, M
    Grimm, R
    Gwinner, G
    Karpuk, S
    Saathoff, G
    Schramm, U
    Schwalm, D
    Weidemüller, M
    HYPERFINE INTERACTIONS, 2003, 146 (1-4): : 189 - 195
  • [40] Laser-Cooled Ions and Atoms in a Storage Ring
    J. Kleinert
    S. Hannemann
    B. Eike
    U. Eisenbarth
    M. Grieser
    R. Grimm
    G. Gwinner
    S. Karpuk
    G. Saathoff
    U. Schramm
    D. Schwalm
    M. Weidemüller
    Hyperfine Interactions, 2003, 146-147 : 189 - 195