Beam finite-element analysis of pressurized fabric tubes

被引:22
|
作者
Davids, William G.
Zhang, Hui
Turner, Adam W.
Peterson, Michael
机构
[1] Univ Maine, Dept Civil & Environm Engn, Orono, ME 04469 USA
[2] Univ Maine, AEWC Ctr, Orono, ME 04469 USA
来源
JOURNAL OF STRUCTURAL ENGINEERING-ASCE | 2007年 / 133卷 / 07期
关键词
beams; finite element method; fabrics; tubes; deformation;
D O I
10.1061/(ASCE)0733-9445(2007)133:7(990)
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
Lightweight, portable air-pressurized beams and arches serve as primary load-carrying members for a number of civilian and military structures. These members are made from synthetic fibers that are woven or braided into a circular cross section. The pressurized air provides structural capacity by pretensioning the fabric and through its behavior as a confined gas. In this paper, a beam finite element is developed for the analysis of pressurized fabric beams based on virtual work principles. Work done by internal pressure due to deformation-induced volume changes is included in the formulation. A nonlinear moment-curvature relationship accounts for fabric wrinkling, and shear deformations are incorporated. A mixed-interpolation Timoshenko beam element is used to discretize the virtual work expression. A numerical method for determining the moment-curvature relationship of an inflated beam made from a fabric obeying a nonlinear stress-strain relationship is developed. Results of experiments on pressurized fabric beams loaded in three- and four-point bending are presented, and the finite-element model is shown to accurately predict experimentally observed load-deflection response for a range of pressures. Simulations demonstrate that in addition to prestressing the fabric, the pressurized air significantly increases beam capacity as the beam volume decreases due to deformation.
引用
收藏
页码:990 / 998
页数:9
相关论文
共 50 条