COMPLEXITY OF HOLOMORPHIC MAPS FROM THE COMPLEX UNIT BALL TO CLASSICAL DOMAINS

被引:9
|
作者
Xiao, Ming [1 ]
Yuan, Yuan [2 ]
机构
[1] Univ Calif San Diego, Dept Math, La Jolla, CA 92093 USA
[2] Syracuse Univ, Dept Math, Syracuse, NY 13244 USA
基金
美国国家科学基金会;
关键词
Bergman metric; classical domain; holomorphic isometry; proper map; BOUNDED SYMMETRIC DOMAINS; B-N; ISOMETRIC EMBEDDINGS; RIGIDITY; MAPPINGS; LINEARITY; BEHAVIOR; DISK; GAP;
D O I
10.4310/AJM.2018.v22.n4.a7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the complexity of holomorphic isometries and proper maps from the complex unit ball to type IV classical domains. We investigate Oil degree estimates of holomorphic isometries and holomorphic maps with minimum target dimension. We also construct a real-parameter family of mutually inequivalent holomorphic isometries from the unit ball to type IV domains. We also provide examples of non-isometric proper holomorphic maps from the complex unit ball to classical domains.
引用
收藏
页码:729 / 759
页数:31
相关论文
共 50 条