We prove that if F is a holomorphic map from the open spectral unit ball of a primitive Banach algebra into itself satisfying F(0) = 0, F(') (0) = I and F(x) x = xF(x) for every x, then F is the identity map. Using this, we prove that if is a semisimple Banach algebra and is a primitive Banach algebra, then any unital spectral isometry from onto which locally preserves commutativity is a Jordan morphism. The same is true when and are both assumed to be von Neumann algebras.
机构:
Univ Roma Tor Vergata, Dipartimento Matemat, Via Ric Sci 1, I-00133 Rome, ItalyUniv Roma Tor Vergata, Dipartimento Matemat, Via Ric Sci 1, I-00133 Rome, Italy
Arosio, Leandro
Bracci, Filippo
论文数: 0引用数: 0
h-index: 0
机构:
Univ Roma Tor Vergata, Dipartimento Matemat, Via Ric Sci 1, I-00133 Rome, ItalyUniv Roma Tor Vergata, Dipartimento Matemat, Via Ric Sci 1, I-00133 Rome, Italy
机构:
Univ Illinois, Dept Math, 1409 W Green St, Urbana, IL 61801 USAUniv Illinois, Dept Math, 1409 W Green St, Urbana, IL 61801 USA
D'Angelo, John P.
Huo, Zhenghui
论文数: 0引用数: 0
h-index: 0
机构:
Univ Illinois, Dept Math, 1409 W Green St, Urbana, IL 61801 USA
Washington Univ, Dept Math, One Brookings Dr, St Louis, MO 63130 USAUniv Illinois, Dept Math, 1409 W Green St, Urbana, IL 61801 USA
Huo, Zhenghui
Xiao, Ming
论文数: 0引用数: 0
h-index: 0
机构:
Univ Illinois, Dept Math, 1409 W Green St, Urbana, IL 61801 USAUniv Illinois, Dept Math, 1409 W Green St, Urbana, IL 61801 USA
机构:
Univ Milano Bicocca, Dipartimento Matemat & Applicazioni, I-20125 Milan, ItalyUniv Milano Bicocca, Dipartimento Matemat & Applicazioni, I-20125 Milan, Italy