In this paper, we specify what functions induce the bounded composition operators on a reproducing kernel Hilbert space (RKHS) associated with an analytic positive definite function defined on Rd. We prove that only affine transforms can do so in a certain large class of RKHS. Our result covers not only the Paley-Wiener space on the real line, studied in previous works, but also much more general RKHSs corresponding to analytic positive definite functions, where existing methods do not work. Our method only relies on intrinsic properties of the RKHSs, and we establish a connection between the behavior of composition operators and asymptotic properties of the greatest zeros of orthogonal polynomials on a weighted L2-space on the real line. We also investigate the compactness of the composition operators and show that any bounded composition operators cannot be compact in our situation. (c) 2022 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
机构:
Inst Politecn Nacl, Escuela Super Computo, Ciudad De Mexico 07730, MexicoInst Politecn Nacl, Escuela Super Computo, Ciudad De Mexico 07730, Mexico
Herrera-Yanez, Crispin
Maximenko, Egor A.
论文数: 0引用数: 0
h-index: 0
机构:
Inst Politecn Nacl, Escuela Super Fis & Matemat, Ciudad De Mexico 07730, MexicoInst Politecn Nacl, Escuela Super Computo, Ciudad De Mexico 07730, Mexico
Maximenko, Egor A.
Ramos-Vazquez, Gerardo
论文数: 0引用数: 0
h-index: 0
机构:
Inst Politecn Nacl, Dept Matemat, Ctr Invest & Estudios Avanzados, Ciudad De Mexico 07360, MexicoInst Politecn Nacl, Escuela Super Computo, Ciudad De Mexico 07730, Mexico