Automatic generation of macro-actions using genetic algorithm for reinforcement learning

被引:0
|
作者
Tateyama, T [1 ]
Kawata, S [1 ]
Oguchi, T [1 ]
机构
[1] Tokyo Metropolitan Univ, Grad Sch Engn, Hachioji, Tokyo 1920397, Japan
关键词
reinforcement learning; macro-action; Semi-Markov Decision Processes; classifier system;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The main problem of reinforcement learning is that learning converges slowly. As one of the solution, McGovern proposed "macro-action". However, a human expert needs to design macro-actions which adapt to an environment. In this paper, we propose a new method that enables to generate the macro-actions which adapt to the enviroment automatically using genetic algorithm.
引用
收藏
页码:286 / 289
页数:4
相关论文
共 50 条
  • [41] Using a Genetic Algorithm to Improve Recurrent Reinforcement Learning for Equity Trading
    Jin Zhang
    Dietmar Maringer
    [J]. Computational Economics, 2016, 47 : 551 - 567
  • [42] Automatic Game World Generation for Platformer Games Using Genetic Algorithm
    Kholimi, Ali Sofyan
    Hamdani, Ahmad
    Husniah, Lailatul
    [J]. 2018 5TH INTERNATIONAL CONFERENCE ON ELECTRICAL ENGINEERING, COMPUTER SCIENCE AND INFORMATICS (EECSI 2018), 2018, : 495 - 498
  • [43] Using a Genetic Algorithm to Improve Recurrent Reinforcement Learning for Equity Trading
    Zhang, Jin
    Maringer, Dietmar
    [J]. COMPUTATIONAL ECONOMICS, 2016, 47 (04) : 551 - 567
  • [44] A Parallel Hybrid Implementation Using Genetic Algorithm, GRASP and Reinforcement Learning
    Queiroz dos Santos, Joao Paulo
    de Lima Junior, Francisco Chagas
    Magalhaes, Rafael Marrocos
    de Melo, Jorge Dantas
    Doria Neto, Adriao Duarte
    [J]. IJCNN: 2009 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS, VOLS 1- 6, 2009, : 2502 - +
  • [45] Automatic structural test data generation using immune genetic algorithm
    Yong, Chen
    Yong, Zhong
    Bao Sheng-Li
    He Fa-Mei
    [J]. PROCEEDINGS OF THE INTERNATIONAL CONFERENCE INFORMATION COMPUTING AND AUTOMATION, VOLS 1-3, 2008, : 688 - 690
  • [46] Deep Reinforcement Learning for Decentralized Multi-Robot Exploration With Macro Actions
    Tan, Aaron Hao
    Bejarano, Federico Pizarro
    Zhu, Yuhan
    Ren, Richard
    Nejat, Goldie
    [J]. IEEE ROBOTICS AND AUTOMATION LETTERS, 2023, 8 (01) : 272 - 279
  • [47] NeuroCrossover: An intelligent genetic locus selection scheme for genetic algorithm using reinforcement learning
    Liu, Haoqiang
    Zong, Zefang
    Li, Yong
    Jin, Depeng
    [J]. APPLIED SOFT COMPUTING, 2023, 146
  • [48] PORTAL: Automatic Curricula Generation for Multiagent Reinforcement Learning
    Wu, Jizhou
    Hao, Jianye
    Yang, Tianpei
    Hao, Xiaotian
    Zheng, Yan
    Wang, Weixun
    Taylor, Matthew E.
    [J]. THIRTY-EIGHTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, VOL 38 NO 14, 2024, : 15934 - 15942
  • [49] Automatic Curriculum Graph Generation for Reinforcement Learning Agents
    Svetlik, Maxwell
    Leonetti, Matteo
    Sinapov, Jivko
    Shah, Rishi
    Walker, Nick
    Stone, Peter
    [J]. THIRTY-FIRST AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2017, : 2590 - 2596
  • [50] Learning algorithm by reinforcement signals for the automatic recognition system
    Ikuta, K
    Tanaka, KI
    Tanaka, H
    Kyuma, K
    [J]. 2004 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN & CYBERNETICS, VOLS 1-7, 2004, : 4844 - 4848