ZnO nanowalls and nanocolumns grown by metalorganic chemical vapor deposition

被引:0
|
作者
Kim, Sang-Woo [1 ]
Fujita, Shizuo [2 ]
Yi, Min-Su [3 ]
Kim, Han-Ki [1 ]
Yang, Beelyong [1 ]
Yoon, Dae Ho [4 ]
机构
[1] Kumoh Natl Inst Technol, Sch Adv Mat & Syst Engn, 1 Yangho Dong, Gumi 730701, Gyeongbuk, South Korea
[2] Kyoto Univ, Int Innovat Ctr, Kyoto 6158510, Japan
[3] Sangju Natl Univ Sangju, Dept Mat Sci & Engn, Sangju 742711, Gyeongbuk, South Korea
[4] Sungkyunkwan Univ, Dept Adv Mat Engn, Suwon 440746, South Korea
关键词
ZnO; nanowall; nanocolumn; MOCVD; Si3N4/Si substrates; hydrogen;
D O I
10.4028/www.scientific.net/SSP.124-126.77
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
ZnO nanowalls and nanocolumns were synthesized on Si3N4 (50 nm)/Si (001) substrates at low growth temperature (350 and 400 degrees C) by metalorganic chemical vapor deposition (MOCVD) with no metal catalysts. ZnO nanowalls with extremely small wall thicknesses below 10 nm and nanocolumns with diameters over 100 nm were formed on the Si3N4/Si substrates relying on MOCVD-growth temperature. It was found that ZnO nanowalls have a strong c-axis preferred orientation with a hexagonal structure, while ZnO nanocolumns have a weak c-axis preferred orientation with broken stacking orders in synchrotron x-ray scattering experiments. In addition, strong free-exciton emission from the ZnO nanowalls was clearly observed in photo luminescence measurements. On the other hand, we could not observe any emission bands from the ZnO nanocolumn samples.
引用
收藏
页码:77 / +
页数:2
相关论文
共 50 条
  • [21] Carbon doping in InAlAs grown by metalorganic chemical vapor deposition
    Ito, H
    Yokoyama, H
    JOURNAL OF CRYSTAL GROWTH, 1997, 173 (3-4) : 315 - 320
  • [22] Metalorganic chemical vapor deposition of ZnO:N using NO as dopant
    Dangbegnon, J. K.
    Talla, K.
    Roro, K. T.
    Botha, J. R.
    PHYSICA B-CONDENSED MATTER, 2009, 404 (22) : 4419 - 4421
  • [23] Synthesis of ZnO nanowalls on Al2O3 (0001) by catalyst-free metalorganic chemical vapor deposition
    Park, JY
    Lee, DJ
    Yun, YS
    Hong, YS
    Lee, BT
    Moon, JH
    Kim, SS
    METALS AND MATERIALS INTERNATIONAL, 2005, 11 (02) : 165 - 168
  • [24] Synthesis of ZnO nanowalls on Al2O3 (0001) by catalyst-free metalorganic chemical vapor deposition
    Jae Young Park
    Dong Ju Lee
    Young Su Yun
    Yong Sung Hong
    Byung-Teak Lee
    Jong Ha Moon
    Sang Sub Kim
    Metals and Materials International, 2005, 11 : 165 - 168
  • [25] Optical and structural properties of ZnO thin films grown on various substrates by metalorganic chemical vapor deposition
    Kong, Bo Hyun
    Mohanta, Sanjay Kumar
    Kim, Dong Chan
    Cho, Hyung Koun
    PHYSICA B-CONDENSED MATTER, 2007, 401 : 399 - 403
  • [26] Properties of In-Doped ZnO Films Grown by Metalorganic Chemical Vapor Deposition on GaN(0001) Templates
    Tammy Ben-Yaacov
    Tommy Ive
    Chris G. Van de Walle
    Umesh K. Mishra
    James S. Speck
    Steven P. Denbaars
    Journal of Electronic Materials, 2010, 39 : 608 - 611
  • [27] ZnO nanowires with high aspect ratios grown by metalorganic chemical vapor deposition using gold nanoparticles
    Kim, SW
    Fujita, S
    Fujita, S
    APPLIED PHYSICS LETTERS, 2005, 86 (15) : 1 - 3
  • [28] Formation and optical characteristics of ZnO:Eu/ZnO nanowires grown by sputtering-assisted metalorganic chemical vapor deposition
    Tatebayashi, J.
    Mishina, M.
    Nishiyama, N.
    Timmerman, D.
    Ichikawa, S.
    Fujiwara, Y.
    JAPANESE JOURNAL OF APPLIED PHYSICS, 2021, 60 (SC)
  • [29] Structural and luminescent properties of Er-doped ZnO films grown by metalorganic chemical vapor deposition
    Terai, Yoshikazu
    Yamaoka, Keisuke
    Yamaguchi, Takashi
    Fujiwara, Yasufumi
    JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B, 2009, 27 (05): : 2248 - 2251
  • [30] Properties of In-Doped ZnO Films Grown by Metalorganic Chemical Vapor Deposition on GaN(0001) Templates
    Ben-Yaacov, Tammy
    Ive, Tommy
    Van de Walle, Chris G.
    Mishra, Umesh K.
    Speck, James S.
    Denbaars, Steven P.
    JOURNAL OF ELECTRONIC MATERIALS, 2010, 39 (05) : 608 - 611