Excited-State Relaxation Dynamics of 3-Vinylthiophene-Terminated Silicon Quantum Dots

被引:12
|
作者
Groenewegen, Vincent [1 ,2 ]
Kuntermann, Volker [1 ,2 ]
Haarer, Dietrich [3 ]
Kunz, Michael [1 ,2 ]
Kryschi, Carola [1 ,2 ]
机构
[1] Univ Erlangen Nurnberg, Inst Phys Chem, Dept Chem & Pharm, D-91058 Erlangen, Germany
[2] Univ Erlangen Nurnberg, ICMM, D-91058 Erlangen, Germany
[3] Univ Bayreuth, BIMF, D-95447 Bayreuth, Germany
来源
JOURNAL OF PHYSICAL CHEMISTRY C | 2010年 / 114卷 / 27期
关键词
POROUS SILICON; PHOTOLUMINESCENCE; NANOPARTICLES; LUMINESCENCE;
D O I
10.1021/jp100266w
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
In theory, silicon quantum dots (SiQDs) emit enhanced photoluminescence with a size-tunable spectrum in the visible range. In practice, surface states originating from oxide defect structures or organic ligands are strongly involved in exciton relaxation dynamics because the amplitudes of hole and electron wave functions are nonzero at the SiQD surface. In this study, SiQDs with well-defined surface properties were obtained through a wet-chemistry procedure providing SiQDs with adjustable sizes and oxide-free, 3-vinylthiophene-terminated surfaces. The 3-vinylthiophene-terminated SiQDs have a crystalline spherical 2 nm core and were observed to exhibit blue photoluminescence (similar to 460 nm) with a quantum yield and lifetime of ca. 23% and 1.3 ns, respectively. The interplay between electronically excited molecular states and conduction band states was examined upon direct monitoring of photoexcited carrier dynamics with femtosecond transient absorption spectroscopy. The 3-vinylthiophene ligands were found to act as surface-bound antennae that mediate ultrafast electron transfer or excitation energy transfer across the SiQD interface.
引用
收藏
页码:11693 / 11698
页数:6
相关论文
共 50 条
  • [21] Effect of Excited-State Structural Relaxation on Midgap Excitations in Co2+-Doped ZnO Quantum Dots
    May, Joseph W.
    Ma, Jiao
    Badaeva, Ekaterina
    Li, Xiaosong
    JOURNAL OF PHYSICAL CHEMISTRY C, 2014, 118 (24): : 13152 - 13156
  • [22] Quantum coherences reveal excited-state dynamics in biophysical systems
    Wang, Lili
    Allodi, Marco A.
    Engel, Gregory S.
    NATURE REVIEWS CHEMISTRY, 2019, 3 (08) : 477 - 490
  • [23] Quantum coherences reveal excited-state dynamics in biophysical systems
    Lili Wang
    Marco A. Allodi
    Gregory S. Engel
    Nature Reviews Chemistry, 2019, 3 : 477 - 490
  • [24] Anomalous Size-Dependent Excited-State Relaxation Dynamics of NanoGUMBOS
    Karam, Tony E.
    Siraj, Noureen
    Warner, Isiah M.
    Haber, Louis H.
    JOURNAL OF PHYSICAL CHEMISTRY C, 2015, 119 (50): : 28206 - 28213
  • [25] Brownian Dynamics Model of Excited-State Relaxation in Solutions of Conjugated Oligomers
    Albu, Nicolae M.
    Yaron, David J.
    JOURNAL OF PHYSICAL CHEMISTRY C, 2013, 117 (23): : 12299 - 12306
  • [26] Excited-state absorption and ultrafast relaxation dynamics of protoporphyrin IX and hemin
    Agnese Marcelli
    Ivana Jelovica Badovinac
    Nada Orlic
    Pier Remigio Salvi
    Cristina Gellini
    Photochemical & Photobiological Sciences, 2013, 12 : 348 - 355
  • [27] Excited-state absorption and ultrafast relaxation dynamics of protoporphyrin IX and hemin
    Marcelli, Agnese
    Badovinac, Ivana Jelovica
    Orlic, Nada
    Salvi, Pier Remigio
    Gellini, Cristina
    PHOTOCHEMICAL & PHOTOBIOLOGICAL SCIENCES, 2013, 12 (02) : 348 - 355
  • [28] Excited-state relaxation of protonated adenine
    Nolting, Dirk
    Weinkauf, Rainer
    Hertel, Ingolf V.
    Schultz, Thomas
    CHEMPHYSCHEM, 2007, 8 (05) : 751 - 755
  • [29] Chemical structure effect on the excited-state relaxation dynamics of the PYP chromophore
    Espagne, A
    Changenet-Barret, P
    Charier, S
    Baudin, JB
    Jullien, L
    Plaza, P
    Martin, MM
    FEMTOCHEMISTRY AND FEMTOBIOLOGY: ULTRAFAST EVENTS IN MOLECULAR SCIENCE, 2004, : 421 - 424
  • [30] RELAXATION PROCESSES IN THE EXCITED-STATE OF PHENYLSILOXANES
    HAMANISHI, K
    SHIZUKA, H
    JOURNAL OF THE CHEMICAL SOCIETY-FARADAY TRANSACTIONS, 1993, 89 (16): : 3007 - 3013