Li2ZnTi3O8@α-Fe2O3 composite anode material for Li-ion batteries

被引:13
|
作者
Li, Ying [1 ]
Yi, Ting-Feng [1 ,3 ,4 ]
Li, Xuezhong [1 ]
Lai, Xueqi [1 ]
Pan, Jingjing [3 ]
Cui, Ping [3 ]
Zhu, Yan-Rong [1 ]
Xie, Ying [2 ]
机构
[1] Northeastern Univ, Sch Mat Sci & Engn, Shenyang 110819, Peoples R China
[2] Heilongjiang Univ, Sch Chem & Mat Sci, Minist Educ, Key Lab Funct Inorgan Mat Chem, Harbin 150080, Peoples R China
[3] Anhui Univ Technol, Sch Chem & Chem Engn, Maanshan 243002, Anhui, Peoples R China
[4] Key Lab Dielectr & Electrolyte Funct Mat Hebei Pr, Qinhuangdao, Hebei, Peoples R China
基金
中国国家自然科学基金;
关键词
Li2ZnTi3O8; alpha-Fe2O3; Anode material; Li-ion battery; REDUCED GRAPHENE OXIDE; HIGH-PERFORMANCE; ELECTROCHEMICAL PROPERTIES; DOPED LI2ZNTI3O8; LITHIUM; CARBON; EFFICIENT; ZNSE;
D O I
10.1016/j.ceramint.2021.03.208
中图分类号
TQ174 [陶瓷工业]; TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Li2ZnTi3O8@alpha-Fe2O3 composites have been successfully prepared by a facile hydrothermal process. Li2ZnTi3O8/alpha-Fe2O3 composites show similar irregular spherical morphologies like Li2ZnTi3O8 and relatively smaller particle sizes than pristine Li2ZnTi3O8. Among all Li2ZnTi3O8/alpha-Fe2O3 composites, Li2ZnTi3O8/alpha-Fe2O3 composite (5 wt %) exhibits the best electrochemical properties. Li2ZnTi3O8/alpha-Fe2O3 composite (5 wt%) delivers a reversible charge capacity of 184.8 mAh g(-1) even at 1000 mA g(-1) after 500 cycles, while pristine Li2ZnTi3O8 only delivers a reversible charge capacity of 110.7 mAh g(-1). The strong covalent bonds between Li2ZnTi3O8 and alpha-Fe2O3 will be formed, which is beneficial for the reduction of interfacial energy and thus helpful for the stabilization of the composite. Because of the special synergistic effect of the multi-phase interface, Li2ZnTi3O8/alpha-Fe2O3 composites not only possess the advantages of single components but also show novel and attractive performances, such as the enhanced ionic conductivity, reduced interfacial charge transfer impedance, improved migration rate of lithium ions, and the enhancement of the rate performance and reversible capacity. The as-prepared Li2ZnTi3O8/ alpha-Fe2O3 composites reveal important potentials as anode materials for next-generation rechargeable Li-ion batteries, and this work also offers an effective strategy to design high performance lithium storage materials for advanced lithium-ion batteries.
引用
下载
收藏
页码:18732 / 18742
页数:11
相关论文
共 50 条
  • [41] Cr-Doped Li2ZnTi3O8 as a High Performance Anode Material for Lithium-Ion Batteries
    Zeng, Xianguang
    Peng, Jing
    Zhu, Huafeng
    Gong, Yong
    Huang, Xi
    FRONTIERS IN CHEMISTRY, 2021, 8
  • [42] High performance Co3O4/Li2TiO3 composite hollow nanofibers as anode material for Li-ion batteries
    Yanwei Li
    Yan Song
    Jiangdong Guo
    Qianli Ma
    Xiangting Dong
    Wensheng Yu
    Ying Yang
    Tingting Wang
    Jinxian Wang
    Guixia Liu
    Journal of Materials Science: Materials in Electronics, 2018, 29 : 14222 - 14231
  • [43] High performance Co3O4/Li2TiO3 composite hollow nanofibers as anode material for Li-ion batteries
    Li, Yanwei
    Song, Yan
    Guo, Jiangdong
    Ma, Qianli
    Dong, Xiangting
    Yu, Wensheng
    Yang, Ying
    Wang, Tingting
    Wang, Jinxian
    Liu, Guixia
    JOURNAL OF MATERIALS SCIENCE-MATERIALS IN ELECTRONICS, 2018, 29 (16) : 14222 - 14231
  • [44] α-Fe2O3 Nanorods as Anode Material for Lithium Ion Batteries
    Lin, Yong-Mao
    Abel, Paul R.
    Heller, Adam
    Mullins, C. Buddie
    JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2011, 2 (22): : 2885 - 2891
  • [45] Li2ZnTi3O8/graphene nanocomposite as a high-performance anode material for lithium-ion batteries
    Wang, Song
    Wang, Lijuan
    Meng, Zhaohui
    Luo, Baomin
    RSC ADVANCES, 2018, 8 (55): : 31628 - 31632
  • [46] Li2ZnTi3O8 anode: design from material to electrode and devices
    Liu, Huanhuan
    Zhang, Xue
    Xu, Haoran
    Ma, Wenzhao
    Wang, Lijuan
    Meng, Zhaohui
    Wang, Fei
    INORGANIC CHEMISTRY FRONTIERS, 2023, 10 (17) : 4943 - 4980
  • [47] Carbon-coated α-Fe2O3 nanostructures for efficient anode of Li-ion battery
    Lv, Xiaoxin
    Deng, Jiujun
    Wang, Jian
    Zhong, Jun
    Sun, Xuhui
    JOURNAL OF MATERIALS CHEMISTRY A, 2015, 3 (09) : 5183 - 5188
  • [48] Binary Li4Ti5O12-Li2Ti3O7 Nanocomposite as an Anode Material for Li-Ion Batteries
    Zhu, Guan-Nan
    Chen, Long
    Wang, Yong-Gang
    Wang, Con-Xiao
    Che, Ren-Chao
    Xia, Yong-Yao
    ADVANCED FUNCTIONAL MATERIALS, 2013, 23 (05) : 640 - 647
  • [49] Facile synthesis of α-Fe2O3/Nb2O5 heterostructure for advanced Li-Ion batteries
    Khatoon, Rabia
    Guo, Yichuan
    Attique, Sanam
    Khan, Karim
    Treen, Ayesha Khan
    Ul Haq, Mahmood
    Tang, Haichao
    Chen, Hongwen
    Tian, Yang
    Nisar, Mohammad
    Din, Salah Ud
    Lu, Jianguo
    JOURNAL OF ALLOYS AND COMPOUNDS, 2020, 837
  • [50] In Situ Synthesis of Reduced Graphite Oxide-Li2ZnTi3O8 Composite as a High Rate Anode Material for Lithium-Ion Batteries
    Yildiz, Suleyman
    Sahan, Halil
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2019, 166 (10) : A2002 - A2012