Crashworthiness Performance of Multi-Cornered Structures under Quasi-Static Compression and Dynamic Axial Loading Conditions

被引:0
|
作者
Tyan, Tau [1 ]
Aekbote, Krishnakanth [1 ]
Chen, Guofei [2 ]
Link, Todd M. [2 ]
机构
[1] Ford Motor Co, Dearborn, MI 48121 USA
[2] US Steel Corp, Pittsburgh, PA USA
关键词
Multi-cornered; Square; Hexagonal; Circular; Octagonal; Twelve-cornered; Sixteen-cornered; Lightweight structure; GEN3 advanced high strength steel; 780 XG3 (TM) steel; Quasi-static; Dynamic; Axial loading; Crashworthiness; ENERGY-ABSORPTION; CIRCULAR TUBES; OPTIMIZATION; SIMULATION; COLLAPSE;
D O I
10.4271/05-14-02-0012
中图分类号
U [交通运输];
学科分类号
08 ; 0823 ;
摘要
With increased consumer demand for fuel effcient vehicles as well as more stringent greenhouse gas regulations and/or Corporate Average Fuel Economy (CAFE) standards from governments around the globe, the automotive industry, including the OEM (Original Equipment Manufacturers) and suppliers, is working diligently to innovate in all areas of vehicle design. In addition to improving aerodynamics, enhancing internal combustion engines and transmission technologies, and developing alternative fuel vehicles, mass reduction has been identified as an important strategy in future vehicle development. In this article, the development, analysis, and experiment of multi-cornered structures are presented. To achieve mass reduction, two non-traditional multi-cornered structures, with twelve- and sixteen-cornered cross-sections, were developed separately by using computer simulations. In the original development of the non-traditional multi-cornered structures, a generic material was utilized and the crashworthiness characteristics of the two non-traditional multi-cornered structures were compared to those of the traditional structures with square, hexagonal, circular, and octagonal cross-sections. To further investigate the crashworthiness characteristics of the non-traditional multi-cornered structures for vehicle implementations, crash simulations were conducted to design a component test series. In the test series, one traditional and two non-traditional multi-cornered structures were included for comparison of crashworthiness characteristics. A 780-MPa third generation advanced high strength steel (AHSS), namely 780 XG3 (TM) steel that combines high strength and ductility, was chosen to produce the prototype parts of the three non-traditional multi-cornered structures. Two loading conditions, including quasi-static compression and dynamic axial loading conditions, were included in the test series. Prototype components made of 780 XG3 (TM) steel were fabricated using hydraulic press brake forming and MIG welding. Based on the results obtained from computer simulations and prototype tests, the two non-traditional multi-cornered structures exhibit enhanced crashworthiness characteristics compared to those of the traditional structures.
引用
收藏
页码:153 / 193
页数:41
相关论文
共 50 条
  • [31] Numerical and experimental investigations of additively manufactured lattice structures under quasi-static compression loading
    Radlof W.
    Benz C.
    Sander M.
    Material Design and Processing Communications, 2021, 3 (03):
  • [32] Quasi-static and dynamic experiments of aluminum honeycombs under combined compression-shear loading
    Ashab, A. S. M.
    Ruan, Dong
    Lu, Guoxing
    Wong, Yat Choy
    MATERIALS & DESIGN, 2016, 97 : 183 - 194
  • [33] Crashworthiness study of circular tubes subjected to radial extrusion under quasi-static loading
    Xie, Suchao
    Chen, Pengfei
    Wang, Ning
    Wang, Jin
    Du, Xuanjin
    INTERNATIONAL JOURNAL OF MECHANICAL SCIENCES, 2021, 192
  • [34] Dynamic fracture of granular material under quasi-static loading
    Sagy, A
    Cohen, G
    Reches, Z
    Fineberg, J
    JOURNAL OF GEOPHYSICAL RESEARCH-SOLID EARTH, 2006, 111 (B4)
  • [35] Analysis of cohesive cracks under quasi-static and dynamic loading
    Wells, GN
    De Borst, R
    Sluys, LJ
    IUTAM SYMPOSIUM ON ANALYTICAL AND COMPUTATIONAL FRACTURE MECHANICS OF NON-HOMOGENEOUS MATERIALS, PROCEEDINGS, 2002, 97 : 293 - 302
  • [36] Simulation of dynamic crack propagation under quasi-static loading
    Kazarinov, N. A.
    Bratov, V. A.
    Petrov, Yu. V.
    DOKLADY PHYSICS, 2014, 59 (02) : 99 - 102
  • [37] Simulation of dynamic crack propagation under quasi-static loading
    N. A. Kazarinov
    V. A. Bratov
    Yu. V. Petrov
    Doklady Physics, 2014, 59 : 99 - 102
  • [38] Crashworthiness study of tubular lattice structures based on triply periodic minimal surfaces under quasi-static axial crushing
    Wan, Mincen
    Hu, Dayong
    Zhang, Hongbo
    Pi, Benlou
    Ye, Xubin
    COMPOSITE STRUCTURES, 2024, 327
  • [39] Visualization of the failure of quartz under quasi-static and dynamic compression
    Kimberley, J.
    Ramesh, K. T.
    Barnouin, O. S.
    JOURNAL OF GEOPHYSICAL RESEARCH-SOLID EARTH, 2010, 115
  • [40] Study on material performance of buffalo (Bovinae) horn under quasi-static and dynamic loading
    Niu, Huanhuan
    Yang, Gang
    Liu, Zhicheng
    Huang, Zhe
    MATERIALS TODAY COMMUNICATIONS, 2024, 40