Estimates of approximation rates by Gaussian radial-basis functions

被引:0
|
作者
Kainen, Paul C. [1 ]
Kurkova, Vera [2 ]
Sanguineti, Marcello [3 ]
机构
[1] Georgetown Univ, Dept Math, Washington, DC 20057 USA
[2] Inst Comp Sci, Acad Sci Czech Republic, Prague, Czech Republic
[3] Inst Comp Sci, Acad Sci Czech Republic, Prague, Czech Republic
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Rates of approximation by networks with Gaussian RBFs with varying widths are investigated. For certain smooth functions, upper bounds are derived in terms of a Sobolev-equivalent norm. Coefficients involved are exponentially decreasing in the dimension. The estimates are proven using Bessel potentials as auxiliary approximating functions.
引用
收藏
页码:11 / +
页数:3
相关论文
共 50 条
  • [1] On cardinal interpolation by Gaussian radial-basis functions: Properties of fundamental functions and estimates for Lebesgue constants
    S. D. Riemenschneider
    N. Sivakumar
    Journal d’Analyse Mathématique, 1999, 79 : 33 - 61
  • [2] On cardinal interpolation by Gaussian radial-basis functions: Properties of fundamental functions and estimates for Lebesgue constants
    Riemenschneider, SD
    Sivakumar, N
    JOURNAL D ANALYSE MATHEMATIQUE, 1999, 79 (1): : 33 - 61
  • [3] Nonuniform Sampling and Recovery of Multidimensional Bandlimited Functions by Gaussian Radial-Basis Functions
    Bailey, B. A.
    Schlumprecht, T.
    Sivakumar, N.
    JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 2011, 17 (03) : 519 - 533
  • [4] Nonuniform Sampling and Recovery of Multidimensional Bandlimited Functions by Gaussian Radial-Basis Functions
    B. A. Bailey
    T. Schlumprecht
    N. Sivakumar
    Journal of Fourier Analysis and Applications, 2011, 17 : 519 - 533
  • [5] Hardware implementation of radial-basis neural networks with Gaussian activation functions on FPGA
    Shymkovych, Volodymyr
    Telenyk, Sergii
    Kravets, Petro
    NEURAL COMPUTING & APPLICATIONS, 2021, 33 (15): : 9467 - 9479
  • [6] Hardware implementation of radial-basis neural networks with Gaussian activation functions on FPGA
    Volodymyr Shymkovych
    Sergii Telenyk
    Petro Kravets
    Neural Computing and Applications, 2021, 33 : 9467 - 9479
  • [7] Gaussian radial-basis functions:: Cardinal interpolation of lp and power-growth data
    Riemenschneider, SD
    Sivakumar, N
    ADVANCES IN COMPUTATIONAL MATHEMATICS, 1999, 11 (2-3) : 229 - 251
  • [8] MULTIVARIATE CARDINAL INTERPOLATION WITH RADIAL-BASIS FUNCTIONS
    BUHMANN, MD
    CONSTRUCTIVE APPROXIMATION, 1990, 6 (03) : 225 - 255
  • [9] Approximation using Gaussian Radial Basis Functions at Different Scales
    Levesley, Jeremy
    INTERNATIONAL CONFERENCE ON NUMERICAL ANALYSIS AND APPLIED MATHEMATICS ICNAAM 2019, 2020, 2293
  • [10] Deep Radial-Basis Value Functions for Continuous Control
    Asadi, Kavosh
    Parikh, Neev
    Parr, Ronald E.
    Konidaris, George D.
    Littman, Michael L.
    THIRTY-FIFTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, THIRTY-THIRD CONFERENCE ON INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE AND THE ELEVENTH SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2021, 35 : 6696 - 6704