MULTIVARIATE CARDINAL INTERPOLATION WITH RADIAL-BASIS FUNCTIONS

被引:124
|
作者
BUHMANN, MD [1 ]
机构
[1] UNIV CAMBRIDGE,DEPT APPL MATH & THEORET PHYS,CAMBRIDGE CB3 9EW,ENGLAND
关键词
Multivariate approximation; Multivariate interpolation; Orders of convergence; Radial-basis functions;
D O I
10.1007/BF01890410
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For a radial-basis function φ{symbol}:ℛ→ℛ we consider interpolation on an infinite regular lattice, to f:ℛn→ℛ, where h is the spacing between lattice points and the cardinal function, satisfies X(j)=δoj for all j∈ℒn. We prove existence and uniqueness of such cardinal functions X, and we establish polynomial precision properties of Ih for a class of radial-basis functions which includes {Mathematical expression}, {Mathematical expression}, and {Mathematical expression} where q∈ℒ+. We also deduce convergence orders of Ihf to sufficiently differentiable functions f when h→0. © 1990 Springer-Verlag New York Inc.
引用
收藏
页码:225 / 255
页数:31
相关论文
共 50 条