An Interval Approach for Fuzzy Linear Regression with Imprecise Data

被引:0
|
作者
Bisserier, Amory [1 ]
Boukezzoula, Reda [1 ]
Galichet, Sylvie [1 ]
机构
[1] Univ Savoie, LISTIC, F-74941 Annecy Le Vieux, France
关键词
Interval Regression; Fuzzy Regression; Uncertainty Representation; Fuzzy Inputs-Fuzzy Outputs; OUTPUT DATA; INPUT; MODELS;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, a revisited approach for fuzzy regression linear model representation and identification is introduced. By adopting the commonly used principle of alpha-cuts, the fuzzy regression implementation is reduced to the handling of conventional intervals, for inputs, parameters and outputs. Using the Midpoint-Radius representation of intervals, the uncertainty attached to linear models becomes more interpretable. Actually, it is possible to determine the output uncertainty origin (model parameters and/or inputs). In this context, a possibilistic regression method is proposed to identify models of minimal global uncertainty, that is with respect to all possible inputs.
引用
收藏
页码:1305 / 1310
页数:6
相关论文
共 50 条
  • [11] Interval data and linear regression: some properties and examples of the possibilistic approach
    Cerny, Michal
    MATHEMATICAL METHODS IN ECONOMICS 2013, PTS I AND II, 2013, : 117 - 122
  • [12] On the Possibilistic Approach to Linear Regression with Rounded or Interval-Censored Data
    Cerny, Michal
    Rada, Miroslav
    MEASUREMENT SCIENCE REVIEW, 2011, 11 (02): : 34 - 40
  • [13] A note on linear regression with interval data and linear programming
    Cerny, Michal
    Rada, Miroslav
    QUANTITATIVE METHODS IN ECONOMICS [MULTIPLE CRITERIA DECISION MAKING XV], 2010, : 276 - 282
  • [14] A goal programming approach to fuzzy linear regression with fuzzy input-output data
    Hassanpour, H.
    Maleki, H. R.
    Yaghoobi, M. A.
    SOFT COMPUTING, 2011, 15 (08) : 1569 - 1580
  • [15] Possibilistic linear regression with fuzzy data: Tolerance approach with prior information
    Cerny, Michal
    Hladik, Milan
    FUZZY SETS AND SYSTEMS, 2018, 340 : 127 - 144
  • [16] On the possibilistic approach to linear regression models involving uncertain, indeterminate or interval data
    Cerny, Michal
    Antoch, Jaromir
    Hladik, Milan
    INFORMATION SCIENCES, 2013, 244 : 26 - 47
  • [17] Linear regression with interval-valued data
    Sun, Yan
    WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL STATISTICS, 2016, 8 (01): : 54 - 60
  • [18] A GOAL PROGRAMMING APPROACH TO FUZZY LINEAR REGRESSION WITH NON-FUZZY INPUT AND FUZZY OUTPUT DATA
    Hassanpour, H.
    Maleki, H. R.
    Yaghoobi, M. A.
    ASIA-PACIFIC JOURNAL OF OPERATIONAL RESEARCH, 2009, 26 (05) : 587 - 604
  • [19] A linear regression model for imprecise response
    Ferraro, M. B.
    Coppi, R.
    Gonzalez Rodriguez, G.
    Colubi, A.
    INTERNATIONAL JOURNAL OF APPROXIMATE REASONING, 2010, 51 (07) : 759 - 770
  • [20] A Fuzzy Linear Regression Model with Interval Type-2 Fuzzy Coefficients
    Poleshchuk, O. M.
    Komarov, E. G.
    Darwish, Ashraf
    PROCEEDINGS OF THE XIX IEEE INTERNATIONAL CONFERENCE ON SOFT COMPUTING AND MEASUREMENTS (SCM 2016), 2016, : 388 - 391