机构:
Worcester Polytech Inst, Data Sci, Worcester, MA 01609 USAWorcester Polytech Inst, Data Sci, Worcester, MA 01609 USA
Bahadur, Nitish
[1
]
Paffenroth, Randy
论文数: 0引用数: 0
h-index: 0
机构:
Worcester Polytech Inst, Data Sci, Worcester, MA 01609 USAWorcester Polytech Inst, Data Sci, Worcester, MA 01609 USA
Paffenroth, Randy
[1
]
机构:
[1] Worcester Polytech Inst, Data Sci, Worcester, MA 01609 USA
来源:
2020 IEEE INTERNATIONAL CONFERENCE ON BIG DATA (BIG DATA)
|
2020年
关键词:
RPCA;
ETF;
Anomaly Detection;
MATRIX;
D O I:
10.1109/BigData50022.2020.9378452
中图分类号:
TP18 [人工智能理论];
学科分类号:
081104 ;
0812 ;
0835 ;
1405 ;
摘要:
Detecting anomalous returns in Exchange Traded Fund(ETF) constituents helps us maintain industry sector exposure while at the same time tuning sector ETF holdings by augmenting portfolio with dollar neutral and sector neutral trades. We demonstrate how Robust Principal Component Analysis (RPCA) can be used to tease out observed ETF constituent returns X into L, a low dimensional manifold, and S, an anomalous matrix containing abnormal returns. Abnormality of returns is determined by checking entries in anomalous matrix against public filings in U.S. Securities and Exchange Commission EDGAR database. Additionally, we show how sparsity in S can be controlled by a tuning parameter that gives us improved f1_scores. Moreover, we build several portfolios with daily and weekly turnover to show how trading in sector ETF anomalies can alter the portfolio return profile.
机构:
Vilnius State Univ, Fac Math & Informat, Dept Informat, LT-03225 Vilnius, LithuaniaVilnius State Univ, Fac Math & Informat, Dept Informat, LT-03225 Vilnius, Lithuania
Raudys, Aistis
Sirvydis, Lukas
论文数: 0引用数: 0
h-index: 0
机构:
Vilnius State Univ, Fac Math & Informat, Dept Informat, LT-03225 Vilnius, LithuaniaVilnius State Univ, Fac Math & Informat, Dept Informat, LT-03225 Vilnius, Lithuania
Sirvydis, Lukas
Lisovskij, Karol
论文数: 0引用数: 0
h-index: 0
机构:
Vilnius State Univ, Fac Math & Informat, Dept Informat, LT-03225 Vilnius, LithuaniaVilnius State Univ, Fac Math & Informat, Dept Informat, LT-03225 Vilnius, Lithuania
Lisovskij, Karol
BUSINESS INFORMATION SYSTEMS, BIS 2012,
2012,
117
: 224
-
235