The Local Structure of Claw-Free Graphs Without Induced Generalized Bulls

被引:1
|
作者
Du, Junfeng [1 ]
Xiong, Liming [2 ]
机构
[1] Beijing Inst Technol, Sch Math & Stat, Beijing 100081, Peoples R China
[2] Beijing Inst Technol, Beijing Key Lab MCAACI, Sch Math & Stat, Beijing 100081, Peoples R China
关键词
Forbidden subgraph; Claw-free; Closure; 3-Connected graph; Generalized bull; FORBIDDEN SUBGRAPHS; HAMILTONICITY; CLOSURE; PAIRS;
D O I
10.1007/s00373-019-02060-z
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we show the following: Let G be a connected claw-free graph such that G has a connected induced subgraph H that has a pair of vertices {v1,v2} of degree one in H whose distance is d+2in H. Then H has an induced subgraph F, which is isomorphic to Bi, j, with {v1, v2}. V( F) and i + j = d + 1, with a well-defined exception. Here Bi, j denotes the graph obtained by attaching two vertex-disjoint paths of lengths i, j = 1 to a triangle. We also use the result above to strengthen the results in Xiong et al. ( Discrete Math 313: 784-795, 2013) in two cases, when i + j = 9, and when the graph is 0-free. Here 0 is the simple graph with degree sequence 4, 2, 2, 2, 2. Let i, j > 0 be integers such that i + j = 9. Then every 3-connected {K1,3, Bi, j}-free graph G is hamiltonian, and every 3-connected {K1,3, 0, B2i,2 j}-free graph G is hamiltonian. The two results above are all sharp in the sense that the condition " i + j = 9" couldn't be replaced by " i + j <= 10".
引用
收藏
页码:1091 / 1103
页数:13
相关论文
共 50 条
  • [21] -Connectivity of Claw-Free Graphs
    Huang, Ziwen
    Li, Xiangwen
    Ma, Jianqing
    GRAPHS AND COMBINATORICS, 2017, 33 (01) : 123 - 140
  • [22] Pancyclism in Claw-free Graphs
    陆玫
    俞正光
    Tsinghua Science and Technology, 1998, (04) : 1218 - 1220
  • [23] Triangles in claw-free graphs
    Wang, H
    DISCRETE MATHEMATICS, 1998, 187 (1-3) : 233 - 244
  • [24] Minimal claw-free graphs
    Dankelmann, P.
    Swart, Henda C.
    van den Berg, P.
    Goddard, W.
    Plummer, M. D.
    CZECHOSLOVAK MATHEMATICAL JOURNAL, 2008, 58 (03) : 787 - 798
  • [25] FACTORS OF CLAW-FREE GRAPHS
    LONC, Z
    RYJACEK, Z
    CZECHOSLOVAK MATHEMATICAL JOURNAL, 1991, 41 (01) : 120 - 130
  • [26] CIRCUMFERENCES OF CLAW-FREE GRAPHS
    SUN Zhiren
    WU Zhengsheng (School of Mathematics and Computer Science
    Systems Science and Mathematical Sciences, 2000, (02) : 225 - 225
  • [27] ON HAMILTONIAN CLAW-FREE GRAPHS
    FLANDRIN, E
    FOUQUET, JL
    LI, H
    DISCRETE MATHEMATICS, 1993, 111 (1-3) : 221 - 229
  • [28] Minimal claw-free graphs
    P. Dankelmann
    Henda C. Swart
    P. van den Berg
    W. Goddard
    M. D. Plummer
    Czechoslovak Mathematical Journal, 2008, 58
  • [29] ALMOST CLAW-FREE GRAPHS
    RYJACEK, Z
    JOURNAL OF GRAPH THEORY, 1994, 18 (05) : 469 - 477
  • [30] Equimatchable claw-free graphs
    Akbari, Saieed
    Alizadeh, Hadi
    Ekim, Tinaz
    Gozupek, Didem
    Shalom, Mordechai
    DISCRETE MATHEMATICS, 2018, 341 (10) : 2859 - 2871