High-dimensional quantum key distribution based on multicore fiber using silicon photonic integrated circuits

被引:197
|
作者
Ding, Yunhong [1 ]
Bacco, Davide [1 ]
Dalgaard, Kjeld [1 ]
Cai, Xinlun [2 ]
Zhou, Xiaoqi [3 ]
Rottwitt, Karsten [1 ]
Oxenlowe, Leif Katsuo [1 ]
机构
[1] Tech Univ Denmark, Dept Photon Engn, DK-2800 Lyngby, Denmark
[2] Sun Yat Sen Univ, Sch Elect & Informat Technol, State Key Lab Optoelect Mat & Technol, Guangzhou, Guangdong, Peoples R China
[3] Sun Yat Sen Univ, Sch Phys & Engn, State Key Lab Optoelect Mat & Technol, Guangzhou, Guangdong, Peoples R China
来源
NPJ QUANTUM INFORMATION | 2017年 / 3卷
关键词
APODIZED GRATING COUPLER; SOI PLATFORM; MODULATION; SECURITY;
D O I
10.1038/s41534-017-0026-2
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Quantum key distribution provides an efficient means to exchange information in an unconditionally secure way. Historically, quantum key distribution protocols have been based on binary signal formats, such as two polarization states, and the transmitted information efficiency of the quantum key is intrinsically limited to 1 bit/photon. Here we propose and experimentally demonstrate, for the first time, a high-dimensional quantum key distribution protocol based on space division multiplexing in multicore fiber using silicon photonic integrated lightwave circuits. We successfully realized three mutually unbiased bases in a four-dimensional Hilbert space, and achieved low and stable quantum bit error rate well below both the coherent attack and individual attack limits. Compared to previous demonstrations, the use of a multicore fiber in our protocol provides a much more efficient way to create high-dimensional quantum states, and enables breaking the information efficiency limit of traditional quantum key distribution protocols. In addition, the silicon photonic circuits used in our work integrate variable optical attenuators, highly efficient multicore fiber couplers, and Mach-Zehnder interferometers, enabling manipulating high-dimensional quantum states in a compact and stable manner. Our demonstration paves the way to utilize state-of-the-art multicore fibers for noise tolerance high-dimensional quantum key distribution, and boost silicon photonics for high information efficiency quantum communications.
引用
收藏
页数:7
相关论文
共 50 条
  • [31] Stable quantum key distribution using a silicon photonic transceiver
    Geng, Wei
    Zhang, Chao
    Zheng, Yunlin
    He, Jiankun
    Zhou, Cheng
    Kong, Yunchuan
    OPTICS EXPRESS, 2019, 27 (20) : 29045 - 29054
  • [32] Chip-Based Measurement-Device-Independent Quantum Key Distribution Using Integrated Silicon Photonic Systems
    Cao, L.
    Luo, W.
    Wang, Y. X.
    Zou, J.
    Yan, R. D.
    Cai, H.
    Zhang, Y.
    Hu, X. L.
    Jiang, C.
    Fan, W. J.
    Zhou, X. Q.
    Dong, B.
    Luo, X. S.
    Lo, G. Q.
    Wang, Y. X.
    Xu, Z. W.
    Sun, S. H.
    Wang, X. B.
    Hao, Y. L.
    Jin, Y. F.
    Kwong, D. L.
    Kwek, L. C.
    Liu, A. Q.
    PHYSICAL REVIEW APPLIED, 2020, 14 (01):
  • [33] Fiber-based high-dimensional quantum communications
    Bacco, Davide
    Da Lio, Beatrice
    Cozzolino, Daniele
    Ding, Yunhong
    Galili, Michael
    Rottwitt, Karsten
    Oxenlowe, Leif K.
    QUANTUM AND NONLINEAR OPTICS VI, 2019, 11195
  • [34] Integrated Photonic Devices for Quantum Key Distribution
    Sibson, Philip
    Godfrey, Mark
    Erven, Chris
    Miki, Shigehito
    Yamashita, Taro
    Fujiwara, Mikio
    Sasaki, Masahide
    Terai, Hirotaka
    Tanner, Michael G.
    Natarajan, Chandra M.
    Hadfield, Robert H.
    O'Brien, Jeremy
    Thompson, Mark G.
    2015 CONFERENCE ON LASERS AND ELECTRO-OPTICS (CLEO), 2015,
  • [35] High-dimensional time-energy entanglement-based quantum key distribution using dispersive optics
    Lee, Catherine
    Zhang, Zheshen
    Mower, Jacob
    Steinbrecher, Greg
    Zhou, Hongchao
    Wang, Ligong
    Horansky, Robert D.
    Verma, Varun B.
    Allman, Michael S.
    Lita, Adriana E.
    Mirin, Richard P.
    Marsili, Francesco
    Beyer, Andrew D.
    Shaw, Matthew D.
    Nam, Sae Woo
    Wornell, Gregory
    Wong, Franco N. C.
    Shapiro, Jeffrey H.
    Englund, Dirk
    2014 CONFERENCE ON LASERS AND ELECTRO-OPTICS (CLEO), 2014,
  • [36] High-Dimensional Quantum Key Distribution by a Spin-Orbit Microlaser
    Zhang, Yichi
    Zhao, Haoqi
    Wu, Tianwei
    Gao, Zihe
    Ge, Li
    Feng, Liang
    PHYSICAL REVIEW X, 2025, 15 (01):
  • [37] High-dimensional coherent one-way quantum key distribution
    Sulimany, Kfir
    Pelc, Guy
    Dudkiewicz, Rom
    Korenblit, Simcha
    Eisenberg, Hagai S.
    Bromberg, Yaron
    Ben-Or, Michael
    NPJ QUANTUM INFORMATION, 2025, 11 (01)
  • [38] Stable Transmission of High-Dimensional Quantum States Over a 2-km Multicore Fiber
    Da Lio, Beatrice
    Bacco, Davide
    Cozzolino, Daniele
    Biagi, Nicola
    Arge, Tuminas Napoleon
    Larsen, Emil
    Rottwitt, Karsten
    Ding, Yunhong
    Zavatta, Alessandro
    Oxenlowe, Leif Katsuo
    IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, 2020, 26 (04)
  • [39] High-dimensional quantum key distribution using energy-time entanglement over 242 km partially deployed fiber
    Liu, Jingyuan
    Lin, Zhihao
    Liu, Dongning
    Feng, Xue
    Liu, Fang
    Cui, Kaiyu
    Huang, Yidong
    Zhang, Wei
    QUANTUM SCIENCE AND TECHNOLOGY, 2024, 9 (01)
  • [40] Tight finite-key analysis for generalized high-dimensional quantum key distribution
    Wang, Rong
    Yin, Zhen-Qiang
    Liu, Hang
    Wang, Shuang
    Chen, Wei
    Guo, Guang-Can
    Han, Zheng-Fu
    PHYSICAL REVIEW RESEARCH, 2021, 3 (02):