Multivariate spectral analysis using Cholesky decomposition

被引:35
|
作者
Dai, M [1 ]
Guo, WS [1 ]
机构
[1] Univ Penn, Dept Biostat & Epidemiol, Philadelphia, PA 19104 USA
基金
美国国家卫生研究院;
关键词
bootstrap; Cholesky decomposition; multivariate time series; smoothing spline; spectral analysis;
D O I
10.1093/biomet/91.3.629
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
We propose to smooth the Cholesky decomposition of a raw estimate of a multivariate spectrum, allowing different degrees of smoothness for different elements. The final spectral estimate is reconstructed from the smoothed Cholesky elements, and is consistent and positive definite. More importantly, the Cholesky decomposition matrix of the spectrum can be used as a transfer function in generating time series whose spectrum is identical to the given spectrum at the Fourier frequencies. This not only provides us with much flexibility in simulations, but also allows us to construct bootstrap confidence intervals for the multivariate spectrum by generating bootstrap samples using the Cholesky decomposition of the spectral estimate. A numerical example and an application to electroencephalogram data are used as illustrations.
引用
收藏
页码:629 / 643
页数:15
相关论文
共 50 条
  • [31] Task based Cholesky decomposition on Xeon Phi architectures using OpenMP
    Dorris, Joseph
    YarKhan, Asim
    Kurzak, Jakub
    Luszczek, Piotr
    Dongarra, Jack
    INTERNATIONAL JOURNAL OF COMPUTATIONAL SCIENCE AND ENGINEERING, 2018, 17 (03) : 310 - 323
  • [32] Two-way ANOVA by using Cholesky decomposition and graphical representation
    Tekin, Mustafa
    Ekelik, Haydar
    HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS, 2022, 51 (04): : 1174 - 1188
  • [33] A fixed-point implementation of matrix inversion using Cholesky decomposition
    Burian, A
    Takala, J
    Ylinen, M
    PROCEEDINGS OF THE 46TH IEEE INTERNATIONAL MIDWEST SYMPOSIUM ON CIRCUITS & SYSTEMS, VOLS 1-3, 2003, : 1431 - 1434
  • [34] Forecasting Multivariate Volatility using the VARFIMA Model on Realized Covariance Cholesky Factors
    Halbleib, Roxana
    Voev, Valeri
    JAHRBUCHER FUR NATIONALOKONOMIE UND STATISTIK, 2011, 231 (01): : 134 - 152
  • [35] Cholesky-based multivariate Gaussian regression
    Muschinski, Thomas
    Mayr, Georg J.
    Simon, Thorsten
    Umlauf, Nikolaus
    Zeileis, Achim
    ECONOMETRICS AND STATISTICS, 2024, 29 : 261 - 281
  • [36] Class-Specific Kernel Discriminant Analysis based on Cholesky Decomposition
    Iosifidis, Alexandros
    Gabbouj, Moncef
    2017 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2017, : 1141 - 1146
  • [37] Photonics-Based Cholesky Decomposition
    Salmani, Mahsa
    Luan, Enxiao
    Saha, Sreenil
    Semnani, Behrooz
    Eshaghi, Armaghan
    2021 CONFERENCE ON LASERS AND ELECTRO-OPTICS EUROPE & EUROPEAN QUANTUM ELECTRONICS CONFERENCE (CLEO/EUROPE-EQEC), 2021,
  • [38] Task-Based Cholesky Decomposition on Knights Corner Using OpenMP
    Dorris, Joseph
    Kurzak, Jakub
    Luszczek, Piotr
    YarKhan, Asim
    Dongarra, Jack
    HIGH PERFORMANCE COMPUTING, ISC HIGH PERFORMANCE 2016 INTERNATIONAL WORKSHOPS, 2016, 9945 : 544 - 562
  • [39] Linear-scaling cholesky decomposition
    Schweizer, Sabine
    Kussmann, Joerg
    Doser, Bernd
    Ochsenfeld, Christian
    JOURNAL OF COMPUTATIONAL CHEMISTRY, 2008, 29 (06) : 1004 - 1010
  • [40] A Generalized Cholesky Decomposition for Interval Matrix
    Zhao, Zhili
    Li, Wei
    Deng, Chongyang
    Wang, Huping
    ADVANCED MECHANICAL DESIGN, PTS 1-3, 2012, 479-481 : 825 - 828