Multivariate spectral analysis using Cholesky decomposition

被引:35
|
作者
Dai, M [1 ]
Guo, WS [1 ]
机构
[1] Univ Penn, Dept Biostat & Epidemiol, Philadelphia, PA 19104 USA
基金
美国国家卫生研究院;
关键词
bootstrap; Cholesky decomposition; multivariate time series; smoothing spline; spectral analysis;
D O I
10.1093/biomet/91.3.629
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
We propose to smooth the Cholesky decomposition of a raw estimate of a multivariate spectrum, allowing different degrees of smoothness for different elements. The final spectral estimate is reconstructed from the smoothed Cholesky elements, and is consistent and positive definite. More importantly, the Cholesky decomposition matrix of the spectrum can be used as a transfer function in generating time series whose spectrum is identical to the given spectrum at the Fourier frequencies. This not only provides us with much flexibility in simulations, but also allows us to construct bootstrap confidence intervals for the multivariate spectrum by generating bootstrap samples using the Cholesky decomposition of the spectral estimate. A numerical example and an application to electroencephalogram data are used as illustrations.
引用
收藏
页码:629 / 643
页数:15
相关论文
共 50 条
  • [1] Multivariate time-dependent spectral analysis using Cholesky decomposition
    Guo, Wensheng
    Dai, Ming
    STATISTICA SINICA, 2006, 16 (03) : 825 - 845
  • [2] Generating multivariate mixture of normal distributions using a modified Cholesky decomposition
    Wang, Jin
    Liu, Chunlei
    PROCEEDINGS OF THE 2006 WINTER SIMULATION CONFERENCE, VOLS 1-5, 2006, : 341 - 346
  • [3] Sparse Kernel Models for Spectral Clustering Using the Incomplete Cholesky Decomposition
    Alzate, Carlos
    Suykens, Johan A. K.
    2008 IEEE INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS, VOLS 1-8, 2008, : 3556 - 3563
  • [4] An efficient Nystrom spectral clustering algorithm using incomplete Cholesky decomposition
    Jia, Hongjie
    Wang, Liangjun
    Song, Heping
    Mao, Qirong
    Ding, Shifei
    EXPERT SYSTEMS WITH APPLICATIONS, 2021, 186
  • [5] Analysis of multivariate longitudinal data using ARMA Cholesky and hypersphere decompositions
    Lee, Keunbaik
    Lee, Chang-Hoon
    Kwak, Min-Sun
    Jang, Eun Jin
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2021, 156
  • [6] Matrix Inversion Using Cholesky Decomposition
    Krishnamoorthy, Aravindh
    Menon, Deepak
    2013 SIGNAL PROCESSING: ALGORITHMS, ARCHITECTURES, ARRANGEMENTS, AND APPLICATIONS (SPA), 2013, : 70 - 72
  • [7] Sparse spectral clustering method based on the incomplete Cholesky decomposition
    Frederix, Katrijn
    Van Barel, Marc
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2013, 237 (01) : 145 - 161
  • [8] An efficient algorithm for generalized discriminant analysis using incomplete Cholesky decomposition
    Wang, Haixian
    Hu, Zilan
    Zhao, Yu'e
    PATTERN RECOGNITION LETTERS, 2007, 28 (02) : 254 - 259
  • [9] REFLECTION COEFFICIENT ESTIMATION USING CHOLESKY DECOMPOSITION
    DICKINSON, BW
    TURNER, JM
    IEEE TRANSACTIONS ON ACOUSTICS SPEECH AND SIGNAL PROCESSING, 1979, 27 (02): : 146 - 149
  • [10] A Porosity Simulation Method Using Cholesky Decomposition
    Zhang, Ting
    Du, Yi
    MULTIMEDIA AND SIGNAL PROCESSING, 2012, 346 : 334 - +