Three-dimensional conformally flat homogeneous Lorentzian manifolds

被引:8
|
作者
Honda, Kyoko
Tsukada, Kazumi
机构
[1] Ochanomizu Univ, Grad Sch Humanities & Sci, Bunkyo Ku, Tokyo 1128610, Japan
[2] Ochanomizu Univ, Dept Math, Bunkyo Ku, Tokyo 1128610, Japan
关键词
D O I
10.1088/1751-8113/40/4/017
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We classify three-dimensional conformally flat homogeneous Lorentzian manifolds. Our classification depends on the form of the Ricci operators.
引用
收藏
页码:831 / 851
页数:21
相关论文
共 50 条
  • [21] CLASSIFICATION OF HOMOGENEOUS CONFORMALLY FLAT RIEMANNIAN MANIFOLDS
    ALEKSEEVSKII, DV
    KIMELFELD, BN
    [J]. MATHEMATICAL NOTES, 1978, 24 (1-2) : 559 - 562
  • [22] Locally conformally flat Lorentzian quasi-Einstein manifolds
    M. Brozos-Vázquez
    E. García-Río
    S. Gavino-Fernández
    [J]. Monatshefte für Mathematik, 2014, 173 : 175 - 186
  • [23] Locally conformally flat Lorentzian quasi-Einstein manifolds
    Brozos-Vazquez, M.
    Garcia-Rio, E.
    Gavino-Fernandez, S.
    [J]. MONATSHEFTE FUR MATHEMATIK, 2014, 173 (02): : 175 - 186
  • [24] Conformally Einstein and Bach-flat four-dimensional homogeneous manifolds
    Calvino-Louzao, E.
    Garcia-Martinez, X.
    Garcia-Rio, E.
    Gutierrez-Rodriguez, I.
    Vazquez-Lorenzo, R.
    [J]. JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2019, 130 : 347 - 374
  • [25] ON THREE-DIMENSIONAL HOMOGENEOUS FINSLER MANIFOLDS
    Tayebi, Akbar
    Najafi, Behzad
    [J]. FACTA UNIVERSITATIS-SERIES MATHEMATICS AND INFORMATICS, 2023, 38 (01): : 141 - 151
  • [26] Weakly-Einstein three-dimensional Lorentzian manifolds
    Haji-Badali, Ali
    Atashpeykar, Parvane
    [J]. PUBLICATIONES MATHEMATICAE DEBRECEN, 2024, 105 (3-4): : 259 - 279
  • [27] WEAKLY-EINSTEIN CONDITIONS OVER LOCALLY CONFORMALLY FLAT LORENTZIAN THREE-MANIFOLDS
    Atashpeykar, Parvane
    Zaeim, Amirhesam
    Haji-badali, Ali
    [J]. REPORTS ON MATHEMATICAL PHYSICS, 2023, 91 (02) : 183 - 198
  • [28] Certain homogeneous paracontact three-dimensional Lorentzian metrics
    Haji-Badali, Ali
    Sourchi, Elham
    [J]. ASIAN-EUROPEAN JOURNAL OF MATHEMATICS, 2018, 11 (01)
  • [29] Corrigendum to “Three-dimensional Lorentzian homogeneous Ricci solitons”
    Brozos-Vázquez M.
    Calvaruso G.
    García-Río E.
    Gavino-Fernández S.
    [J]. Israel Journal of Mathematics, 2023, 255 (2) : 975 - 984
  • [30] CONFORMALLY OSSERMAN LORENTZIAN MANIFOLDS
    Blazic, Novica
    [J]. KRAGUJEVAC JOURNAL OF MATHEMATICS, 2005, 28 : 87 - 96