3D Object Detection Method Using LiDAR Information in Multiple Frames

被引:0
|
作者
Kim, Jung-Un [1 ]
Min, Jihong [2 ]
Kang, Hang-Bong [1 ]
机构
[1] Catholic Univ Korea, Bucheon, Gyeonggi Do, South Korea
[2] Agcy Def Dev, Daejeon, South Korea
关键词
Object detection; Deep learning; Optical flow; Sensor fusion;
D O I
10.1007/978-3-319-68560-1_25
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
For a safe autonomous navigation, it is important to understand the configuration of the environment and quickly, accurately grasp the information regarding the location, direction, and size of each constituent object. Recent studies on autonomous navigation were performed to not only detect and classify objects, but also to segment and evaluate their properties. However, in these studies, pre-processing was required, which incurred a considerable amount of computational cost. Moreover, the 3D shape model was further analyzed. In other words, more computation cost and computing power are required. In this study, we propose a new method for detecting and estimating the pose of a 3D object using LiDAR information via charge-coupled-device (CCD) in real-time environment. We classified objects into classes (e.g., car, pedestrian, and cyclist), and the 3D pose of an object is quickly estimated without requiring a separate 3D-shape model. From the multiple frames obtained using the LiDAR and CCD, we design a method to robustly reconstruct the 3D environment in real time by aligning the object information of the previously obtained frames with the current frame through an optical-flow method. Our method helps in complementing the limitations of CCD-based classifiers and correcting the defects by increasing the density of the 3D-LiDAR point cloud. We compared the results obtained using our method with the state-of-the-art results of the KITTI data set; which were in good agreement in terms of speed and accuracy. This comparison shows that the 3D pose of a box can be generated with better speed and accuracy using the reconstructed 3D-point-cloud clusters proposed in our method.
引用
收藏
页码:276 / 286
页数:11
相关论文
共 50 条
  • [41] LiDAR Filtering in 3D Object Detection Based on Improved RANSAC
    Wang, Bingxu
    Lan, Jinhui
    Gao, Jiangjiang
    REMOTE SENSING, 2022, 14 (09)
  • [42] 3D Object Detection from LiDAR Data using Distance Dependent Feature Extraction
    Engels, Guus
    Aranjuelo, Nerea
    Arganda-Carreras, Ignacio
    Nieto, Marcos
    Otaegui, Oihana
    PROCEEDINGS OF THE 6TH INTERNATIONAL CONFERENCE ON VEHICLE TECHNOLOGY AND INTELLIGENT TRANSPORT SYSTEMS (VEHITS), 2020, : 289 - 300
  • [43] Faraway-Frustum: Dealing with Lidar Sparsity for 3D Object Detection using Fusion
    Zhang, Haolin
    Yang, Dongfang
    Yurtsever, Ekim
    Redmill, Keith A.
    Ozguner, Umit
    2021 IEEE INTELLIGENT TRANSPORTATION SYSTEMS CONFERENCE (ITSC), 2021, : 2646 - 2652
  • [44] 3D Point Cloud Stitching for Object Detection with Wide FoV Using Roadside LiDAR
    Lan, Xiaowei
    Wang, Chuan
    Lv, Bin
    Li, Jian
    Zhang, Mei
    Zhang, Ziyi
    ELECTRONICS, 2023, 12 (03)
  • [45] LMNet: Real-time Multiclass Object Detection on CPU Using 3D LiDAR
    Minemura, Kazuki
    Liau, Hengfui
    Monrroy, Abraham
    Kato, Shinpei
    2018 3RD ASIA-PACIFIC CONFERENCE ON INTELLIGENT ROBOT SYSTEMS (ACIRS 2018), 2018, : 28 - 34
  • [46] A Hybrid Method Using Temporal and Spatial Information for 3D Lidar Data Segmentation
    Tuncer, Mehmet Ali Cagri
    Schulz, Dirk
    ICINCO: PROCEEDINGS OF THE 14TH INTERNATIONAL CONFERENCE ON INFORMATICS IN CONTROL, AUTOMATION AND ROBOTICS - VOL 2, 2017, : 162 - 171
  • [47] Out-of-Distribution Detection for LiDAR-based 3D Object Detection
    Huang, Chengjie
    Van Duong Nguyen
    Abdelzad, Vahdat
    Mannes, Christopher Gus
    Rowe, Luke
    Therien, Benjamin
    Salay, Rick
    Czarnecki, Krzysztof
    2022 IEEE 25TH INTERNATIONAL CONFERENCE ON INTELLIGENT TRANSPORTATION SYSTEMS (ITSC), 2022, : 4265 - 4271
  • [48] Real-Time 3D Object Detection and Classification in Autonomous Driving Environment Using 3D LiDAR and Camera Sensors
    Arikumar, K. S.
    Kumar, A. Deepak
    Gadekallu, Thippa Reddy
    Prathiba, Sahaya Beni
    Tamilarasi, K.
    ELECTRONICS, 2022, 11 (24)
  • [49] A failure detection method for 3D LiDAR based localization
    Yin, Huan
    Tang, Li
    Ding, Xiaqing
    Wang, Yue
    Xiong, Rong
    2019 CHINESE AUTOMATION CONGRESS (CAC2019), 2019, : 4559 - 4563
  • [50] RGB Image- and Lidar-Based 3D Object Detection Under Multiple Lighting Scenarios
    Wentao Chen
    Wei Tian
    Xiang Xie
    Wilhelm Stork
    Automotive Innovation, 2022, 5 : 251 - 259