A Rationale-Centric Framework for Human-in-the-loop Machine Learning

被引:0
|
作者
Lu, Jinghui [1 ,2 ,5 ]
Yang, Linyi [3 ,4 ]
Mac Namee, Brian [1 ,2 ]
Zhang, Yue [3 ,4 ]
机构
[1] Univ Coll Dublin, Insight Ctr Data Analyt, Dublin, Ireland
[2] Univ Coll Dublin, Sch Comp Sci, Dublin, Ireland
[3] Westlake Univ, Sch Engn, Hangzhou, Peoples R China
[4] Westlake Inst Adv Study, Inst Adv Technol, Hangzhou, Peoples R China
[5] SenseTime Res, Hangzhou, Peoples R China
基金
爱尔兰科学基金会;
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We present a novel rationale-centric framework with human-in-the-loop - Rationales-centric Double-robustness Learning (RDL) - to boost model out-of-distribution performance in few-shot learning scenarios. By using static semi-factual generation and dynamic human-intervened correction, RDL exploits rationales (i.e. phrases that cause the prediction), human interventions and semi-factual augmentations to decouple spurious associations and bias models towards generally applicable underlying distributions, which enables fast and accurate generalisation. Experimental results show that RDL leads to significant prediction benefits on both in-distribution and out-of-distribution tests compared to many state-of-the-art benchmarks-especially for few-shot learning scenarios. We also perform extensive ablation studies to support in-depth analyses of each component in our framework.
引用
收藏
页码:6986 / 6996
页数:11
相关论文
共 50 条
  • [1] A survey of human-in-the-loop for machine learning
    Wu, Xingjiao
    Xiao, Luwei
    Sun, Yixuan
    Zhang, Junhang
    Ma, Tianlong
    He, Liang
    [J]. FUTURE GENERATION COMPUTER SYSTEMS-THE INTERNATIONAL JOURNAL OF ESCIENCE, 2022, 135 : 364 - 381
  • [2] Human-in-the-loop Applied Machine Learning
    Brodley, Carla E.
    [J]. 2017 IEEE INTERNATIONAL CONFERENCE ON BIG DATA (BIG DATA), 2017, : 1 - 1
  • [3] HELIX: Accelerating Human-in-the-loop Machine Learning
    Xin, Doris
    Ma, Litian
    Liu, Jialin
    Macke, Stephen
    Song, Shuchen
    Parameswaran, Aditya
    [J]. PROCEEDINGS OF THE VLDB ENDOWMENT, 2018, 11 (12): : 1958 - 1961
  • [4] Human-in-the-loop machine learning: a state of the art
    Mosqueira-Rey, Eduardo
    Hernandez-Pereira, Elena
    Alonso-Rios, David
    Bobes-Bascaran, Jose
    Fernandez-Leal, Angel
    [J]. ARTIFICIAL INTELLIGENCE REVIEW, 2023, 56 (04) : 3005 - 3054
  • [5] Human-in-the-loop machine learning: a state of the art
    Eduardo Mosqueira-Rey
    Elena Hernández-Pereira
    David Alonso-Ríos
    José Bobes-Bascarán
    Ángel Fernández-Leal
    [J]. Artificial Intelligence Review, 2023, 56 : 3005 - 3054
  • [6] Human-in-the-Loop Machine Learning for the Treatment of Pancreatic Cancer
    Mosqueira-Rey, Eduardo
    Perez-Sanchez, Alberto
    Hernandez-Pereira, Elena
    Alonso-Rios, David
    Bobes-Bascaran, Jose
    Fernandez-Leal, Angel
    Moret-Bonillo, Vicente
    Vidal-Insua, Yolanda
    Vazquez-Rivera, Francisca
    [J]. 2023 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS, IJCNN, 2023,
  • [7] Human-in-the-loop machine learning with applications for population health
    Long Chen
    Jiangtao Wang
    Bin Guo
    Liming Chen
    [J]. CCF Transactions on Pervasive Computing and Interaction, 2023, 5 : 1 - 12
  • [8] A Machine Learning System For Human-in-the-loop Video Surveillance
    Vural, Ulas
    Akgul, Yusuf Sinan
    [J]. 2012 21ST INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR 2012), 2012, : 1092 - 1095
  • [9] Human-in-the-loop machine learning with applications for population health
    Chen, Long
    Wang, Jiangtao
    Guo, Bin
    Chen, Liming
    [J]. CCF TRANSACTIONS ON PERVASIVE COMPUTING AND INTERACTION, 2023, 5 (01) : 1 - 12
  • [10] Accelerating Human-in-the-loop Machine Learning: Challenges and Opportunities
    Xin, Doris
    Ma, Litian
    Liu, Jialin
    Macke, Stephen
    Song, Shuchen
    Parameswaran, Aditya
    [J]. PROCEEDINGS OF THE SECOND WORKSHOP ON DATA MANAGEMENT FOR END-TO-END MACHINE LEARNING, 2018,