Negative Thermophoretic Force in the Strong Coupling Regime

被引:14
|
作者
de Miguel, Rodrigo [1 ]
Miguel Rubi, J. [2 ,3 ]
机构
[1] Norwegian Univ Sci & Technol, Dept Teacher Educ, N-7491 Trondheim, Norway
[2] Univ Barcelona, Dept Condensed Matter Phys, E-08028 Barcelona, Spain
[3] Norwegian Univ Sci & Technol, PoreLab Ctr Excellence, N-7491 Trondheim, Norway
关键词
TEMPERATURE-DEPENDENCE; THERMAL-DIFFUSION; MOTION; PROTEIN; THERMODIFFUSION; ACCUMULATION; VESICLES;
D O I
10.1103/PhysRevLett.123.200602
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Negative thermophoresis (a particle moving up the temperature gradient) is a somewhat counterintuitive phenomenon which has thus far eluded a simple thermostatistical description. The purpose of this Letter is to show that a thermodynamic framework based on the formulation of a Hamiltonian of mean force has the descriptive ability to capture this interesting and elusive phenomenon in an unusually elegant and straightforward fashion. We propose a mechanism that describes the advent of a thermophoretic force acting from cold to hot on systems that are strongly coupled to a nonisothermal heat bath. When a system is strongly coupled to the heat bath, the system's eigenenergies epsilon(j) become effectively temperature dependent. This adjustment of the energy levels allows the system to take heat from the environment, +d <epsilon(j)>, and return it as work, -d < Td epsilon(j)/dT >. This effect can make the temperature dependence of the effective energy profile nonmonotonic. As a result, particles may experience a force in either direction depending on the temperature.
引用
收藏
页数:6
相关论文
共 50 条
  • [41] Multispin probes for thermometry in the strong-coupling regime
    Brenes, Marlon
    Segal, Dvira
    [J]. Physical Review A, 2023, 108 (03)
  • [42] Quantum-Opto-Mechanics in the Strong Coupling Regime
    Groeblacher, Simon
    Hofer, Sebastian
    Vanner, Michael
    Hammerer, Klemens
    Aspelmeyer, Markus
    [J]. 2010 CONFERENCE ON LASERS AND ELECTRO-OPTICS (CLEO) AND QUANTUM ELECTRONICS AND LASER SCIENCE CONFERENCE (QELS), 2010,
  • [43] Improving entanglement of two atoms in strong coupling regime
    Liu, Hui
    Yang, Qhing
    Yang, Ming
    Cao, Zhuoliang
    [J]. INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2016, 30 (07):
  • [44] Plasmonic Surface Lattice Resonances at the Strong Coupling Regime
    Vakevainen, A. I.
    Moerland, R. J.
    Rekola, H. T.
    Eskelinen, A. -P.
    Martikainen, J. -P.
    Kim, D. -H.
    Torma, P.
    [J]. NANO LETTERS, 2014, 14 (04) : 1721 - 1727
  • [45] Nonlinear emission of semiconductor microcavities in the strong coupling regime
    Houdré, R
    Weisbuch, C
    Stanley, RP
    Oesterle, U
    Ilegems, M
    [J]. PHYSICAL REVIEW LETTERS, 2000, 85 (13) : 2793 - 2796
  • [46] Switchable dynamics in the deep-strong-coupling regime
    Zheng, Li-Li
    Lu, Xin-You
    Bin, Qian
    Zhan, Zhi-Ming
    Li, Sha
    Wu, Ying
    [J]. PHYSICAL REVIEW A, 2018, 98 (02)
  • [47] SINGLE IMPURITY MODELS IN THE STRONG-COUPLING REGIME
    GRUNEBERG, J
    KEITER, H
    [J]. PHYSICA B, 1994, 199 : 195 - 196
  • [48] Circuit cavity electromechanics in the strong-coupling regime
    Teufel, J. D.
    Li, Dale
    Allman, M. S.
    Cicak, K.
    Sirois, A. J.
    Whittaker, J. D.
    Simmonds, R. W.
    [J]. NATURE, 2011, 471 (7337) : 204 - 208
  • [49] Strong Coupling Optomechanics Mediated by a Qubit in the Dispersive Regime
    Aporvari, Ahmad Shafiei
    Vitali, David
    [J]. ENTROPY, 2021, 23 (08)
  • [50] Universal approach to quantum thermodynamics in the strong coupling regime
    Dou, Wenjie
    Ochoa, Maicol A.
    Nitzan, Abraham
    Subotnik, Joseph E.
    [J]. PHYSICAL REVIEW B, 2018, 98 (13)