EISA-Score: Element Interactive Surface Area Score for Protein-Ligand Binding Affinity Prediction

被引:7
|
作者
Rana, Md Masud [1 ]
Nguyen, Duc Duy [1 ]
机构
[1] Univ Kentucky, Dept Math, Lexington, KY 40506 USA
关键词
DIELECTRIC FUNCTION; QUANTUM DYNAMICS; MESH GENERATION; CURVATURE; EFFICIENT; MACROMOLECULES; APPROXIMATION; COMPUTATION; ALGORITHMS; CONTINUUM;
D O I
10.1021/acs.jcim.2c00697
中图分类号
R914 [药物化学];
学科分类号
100701 ;
摘要
Molecular surface representations have been advertised as a great tool to study protein structure and functions, including protein-ligand binding affinity modeling. However, the conventional surface-area-based methods fail to deliver a competitive performance on the energy scoring tasks. The main reason is the lack of crucial physical and chemical interactions encoded in the molecular surface generations. We present novel molecular surface representations embedded in different scales of the element interactive manifolds featuring the dramatically dimensional reduction and accurately physical and biological properties encoders. Those low-dimensional surface-based descriptors are ready to be paired with any advanced machine learning algorithms to explore the essential structure-activity relationships that give rise to the element interactive surface area-based scoring functions (EISA-score). The newly developed EISA-score has outperformed many state-of-the-art models, including various well-established surface-related representations, in standard PDBbind benchmarks.
引用
收藏
页码:4329 / 4341
页数:13
相关论文
共 50 条
  • [31] Predicting protein-ligand binding affinity with gnina
    Francoeur, Paul
    Koes, David
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2019, 258
  • [32] DLSSAffinity: protein-ligand binding affinity prediction via a deep learning model
    Wang, Huiwen
    Liu, Haoquan
    Ning, Shangbo
    Zeng, Chengwei
    Zhao, Yunjie
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2022, 24 (17) : 10124 - 10133
  • [33] Structure-based protein-ligand interaction fingerprints for binding affinity prediction
    Wang, Debby D.
    Chan, Moon-Tong
    Yan, Hong
    COMPUTATIONAL AND STRUCTURAL BIOTECHNOLOGY JOURNAL, 2021, 19 : 6291 - 6300
  • [34] A Novel Method for Protein-Ligand Binding Affinity Prediction and the Related Descriptors Exploration
    Li, Shuyan
    Xi, Lili
    Wang, Chengqi
    Li, Jiazhong
    Lei, Beilei
    Liu, Huanxiang
    Yao, Xiaojun
    JOURNAL OF COMPUTATIONAL CHEMISTRY, 2009, 30 (06) : 900 - 909
  • [35] Enhancing Generalizability in Protein-Ligand Binding Affinity Prediction with Multimodal Contrastive Learning
    Luo, Ding
    Liu, Dandan
    Qu, Xiaoyang
    Dong, Lina
    Wang, Binju
    JOURNAL OF CHEMICAL INFORMATION AND MODELING, 2024, 64 (06) : 1892 - 1906
  • [36] SadNet: a novel multimodal fusion network for protein-ligand binding affinity prediction
    Hong, Qiansen
    Zhou, Guoqiang
    Qin, Yuke
    Shen, Jun
    Li, Haoran
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2024, 26 (16) : 12880 - 12891
  • [37] Binding Affinity Prediction for Protein-Ligand Complexes Based on β Contacts and B Factor
    Liu, Qian
    Kwoh, Chee Keong
    Li, Jinyan
    JOURNAL OF CHEMICAL INFORMATION AND MODELING, 2013, 53 (11) : 3076 - 3085
  • [38] Equivariant Line Graph Neural Network for Protein-Ligand Binding Affinity Prediction
    Yi, Yiqiang
    Wan, Xu
    Zhao, Kangfei
    Le, Ou-Yang
    Zhao, Peilin
    IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, 2024, 28 (07) : 4336 - 4347
  • [39] Hybrid Quantum Neural Network Approaches to Protein-Ligand Binding Affinity Prediction
    Avramouli, Maria
    Savvas, Ilias K.
    Vasilaki, Anna
    Tsipourlianos, Andreas
    Garani, Georgia
    MATHEMATICS, 2024, 12 (15)
  • [40] Improved prediction of protein-ligand binding affinity on not-so-big data
    Wang, Renxiao
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2016, 251