Graph Neural Network with Self-Supervised Learning for Noncoding RNA-Drug Resistance Association Prediction

被引:16
|
作者
Zheng, Jingjing [1 ]
Qian, Yurong [1 ]
He, Jie [2 ]
Kang, Zerui [2 ]
Deng, Lei [1 ,2 ]
机构
[1] Xinjiang Univ, Sch Software, Urumqi 830091, Peoples R China
[2] Cent South Univ, Sch Comp Sci & Engn, Changsha 410083, Peoples R China
基金
中国国家自然科学基金;
关键词
Forecasting - Graph neural networks - Graph theory - Supervised learning;
D O I
10.1021/acs.jcim.2c00367
中图分类号
R914 [药物化学];
学科分类号
100701 ;
摘要
Noncoding RNA(ncRNA) is closely related to drug resistance. Identifying the association between ncRNA and drug resistance is of great significance for drug development. Methods based on biological experiments are often time-consuming and small-scale. Therefore, developing computational methods to distinguish the association between ncRNA and drug resistance is urgent. We develop a computational framework called GSLRDA to predict the association between ncRNA and drug resistance in this work. First, the known ncRNA-drug resistance associations are modeled as a bipartite graph of ncRNA and drug. Then, GSLRDA uses the light graph convolutional network (lightGCN) to learn the vector representation of ncRNA and drug from the ncRNA-drug bipartite graph. In addition, GSLRDA uses different data augmentation methods to generate different views for ncRNA and drug nodes and performs self-supervised learning, further improving the quality of learned ncRNA and drug vector representations through contrastive learning between nodes. Finally, GSLRDA uses the inner product to predict the association between ncRNA and drug resistance. To the best of our knowledge, GSLRDA is the first to apply self-supervised learning in association prediction tasks in the field of bioinformatics. The experimental results show that GSLRDA takes an AUC value of 0.9101, higher than the other eight state-of-the-art models. In addition, case studies including two drugs further illustrate the effectiveness of GSLRDA in predicting the association between ncRNA and drug resistance. The code and data sets of GSLRDA are available at https://github.com/JJZ-code/GSLRDA.
引用
收藏
页码:3676 / 3684
页数:9
相关论文
共 50 条
  • [41] Self-supervised Learning of Visual Graph Matching
    Liu, Chang
    Zhang, Shaofeng
    Yang, Xiaokang
    Yan, Junchi
    COMPUTER VISION, ECCV 2022, PT XXIII, 2022, 13683 : 370 - 388
  • [42] Self-supervised dual graph learning for recommendation
    Li, Anchen
    Yang, Bo
    Huo, Huan
    Hussain, Farookh Khadeer
    Xu, Guandong
    KNOWLEDGE-BASED SYSTEMS, 2025, 310
  • [43] Self-Supervised Graph Neural Network for Multi-Source Domain Adaptation
    Yuan, Jin
    Hou, Feng
    Du, Yangzhou
    Shi, Zhongchao
    Geng, Xin
    Fan, Jianping
    Rui, Yong
    PROCEEDINGS OF THE 30TH ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA, MM 2022, 2022, : 3907 - 3916
  • [44] JGCL: Joint Self-Supervised and Supervised Graph Contrastive Learning
    Akkas, Selahattin
    Azad, Ariful
    COMPANION PROCEEDINGS OF THE WEB CONFERENCE 2022, WWW 2022 COMPANION, 2022, : 1099 - 1105
  • [45] Self-Supervised Learning with Graph Neural Networks for Region of Interest Retrieval in Histopathology
    Ozen, Yigit
    Aksoy, Selim
    Kosemehmetoglu, Kemal
    Onder, Sevgen
    Uner, Aysegul
    2020 25TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR), 2021, : 6329 - 6334
  • [46] Self-Supervised Graph Learning With Hyperbolic Embedding for Temporal Health Event Prediction
    Lu, Chang
    Reddy, Chandan K.
    Ning, Yue
    IEEE TRANSACTIONS ON CYBERNETICS, 2023, 53 (04) : 2124 - 2136
  • [47] Motif-based Graph Self-Supervised Learning for Molecular Property Prediction
    Zhang, Zaixi
    Liu, Qi
    Wang, Hao
    Lu, Chengqiang
    Lee, Chee-Kong
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 34 (NEURIPS 2021), 2021, 34
  • [48] Network-to-Network: Self-Supervised Network Representation Learning via Position Prediction
    Liu, Jie
    Zhang, Chunhai
    He, Zhicheng
    Zhang, Wenzheng
    Li, Na
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2025, 37 (03) : 1354 - 1365
  • [49] Embedding Imputation With Self-Supervised Graph Neural Networks
    Varolgunes, Uras
    Yao, Shibo
    Ma, Yao
    Yu, Dantong
    IEEE ACCESS, 2023, 11 : 70610 - 70620
  • [50] Siamese Network Based Multiscale Self-Supervised Heterogeneous Graph Representation Learning
    Chen, Zijun
    Luo, Lihui
    Li, Xunkai
    Jiang, Bin
    Guo, Qiang
    Wang, Chunpeng
    IEEE ACCESS, 2022, 10 : 98490 - 98500