Effective field theory for dilute Fermi systems at fourth order

被引:9
|
作者
Wellenhofer, C. [1 ,2 ]
Drischler, C. [3 ,4 ,5 ]
Schwenk, A. [1 ,2 ,6 ]
机构
[1] Tech Univ Darmstadt, Dept Phys, D-64289 Darmstadt, Germany
[2] GSI Helmholtzzentrum Schwerionenforsch GmbH, ExtreMe Matter Inst EMMI, D-64291 Darmstadt, Germany
[3] Michigan State Univ, Facil Rare Isotope Beams, E Lansing, MI 48824 USA
[4] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA
[5] Lawrence Berkeley Natl Lab, Div Nucl Sci, Berkeley, CA 94720 USA
[6] Max Planck Inst Kernphys, Saupfercheckweg 1, D-69117 Heidelberg, Germany
关键词
GROUND-STATE ENERGY; PERTURBATION-SERIES; NEUTRON MATTER; RENORMALIZATION; GAS; GENERATION; DIAGRAMS; DENSITY;
D O I
10.1103/PhysRevC.104.014003
中图分类号
O57 [原子核物理学、高能物理学];
学科分类号
070202 ;
摘要
We discuss high-order calculations in perturbative effective field theory for fermions at low energy scales. The Fermi-momentum or k(F)a(s) expansion for the ground-state energy of the dilute Fermi gas is calculated to fourth order, both in cutoff regularization and in dimensional regularization. For the case of spin one-half fermions we find from a Bayesian analysis that the expansion is well converged at this order for vertical bar k(F)a(s)vertical bar less than or similar to 0.5. Furthermore, we show that Pade-Borel resummations can improve the convergence for vertical bar k(F)a(s)vertical bar less than or similar to 1. Our results provide important constraints for nonperturbative calculations of ultracold atoms and dilute neutron matter.
引用
收藏
页数:17
相关论文
共 50 条
  • [31] Ground-state energy of dilute neutron matter at next-to-leading order in lattice chiral effective field theory
    Epelbaum, E.
    Krebs, H.
    Lee, D.
    Meissner, U. -G.
    EUROPEAN PHYSICAL JOURNAL A, 2009, 40 (02): : 199 - 213
  • [32] Non-Fermi liquid effective field theory of dense QCD matter
    Schafer, Thomas
    NUCLEAR PHYSICS A, 2007, 785 (1-2) : 110C - 113C
  • [33] Effective field theory of Berry Fermi liquid from the coadjoint orbit method
    Huang, Xiaoyang
    PHYSICAL REVIEW B, 2024, 109 (23)
  • [34] Local position-space two-nucleon potentials from leading to fourth order of chiral effective field theory
    Saha, S. K.
    Entem, D. R.
    Machleidt, R.
    Nosyk, Y.
    PHYSICAL REVIEW C, 2023, 107 (03)
  • [35] Field Theory of the Fermi Function
    Hill, Richard J.
    Plestid, Ryan
    PHYSICAL REVIEW LETTERS, 2024, 133 (02)
  • [36] A cosmological approach to a high-order effective field theory
    Ozkurt, S
    CLASSICAL AND QUANTUM GRAVITY, 1996, 13 (02) : 265 - 275
  • [37] Effective field theory of degenerate higher-order inflation
    Motohashi, Hayato
    Hu, Wayne
    PHYSICAL REVIEW D, 2020, 101 (08)
  • [38] Effective Field Theory Analysis of Three-Boson Systems at Next-To-Next-To-Leading Order
    Ji, Chen
    Phillips, Daniel R.
    FEW-BODY SYSTEMS, 2013, 54 (12) : 2317 - 2355
  • [39] Effective Field Theory Analysis of Three-Boson Systems at Next-To-Next-To-Leading Order
    Chen Ji
    Daniel R. Phillips
    Few-Body Systems, 2013, 54 : 2317 - 2355
  • [40] Bayesian estimation of the low-energy constants up to fourth order in the nucleon-nucleon sector of chiral effective field theory
    Svensson, Isak
    Ekstrom, Andreas
    Forssen, Christian
    PHYSICAL REVIEW C, 2023, 107 (01)