Dynamical generation of a gauge symmetry in the double-exchange model

被引:3
|
作者
Carmona, JM [1 ]
Cruz, A
Fernández, LA
Jiménez, S
Martín-Mayor, V
Muñoz-Sudupe, A
Pech, J
Ruiz-Lorenzo, JJ
Tarancón, A
Téllez, P
机构
[1] Univ Zaragoza, Fac Ciencias, Dept Fis Teor, Zaragoza 50009, Spain
[2] Univ Complutense Madrid, Fac Ciencias Fis, Dept Fis Teor 1, E-28040 Madrid, Spain
[3] Univ Extremadura, Fac Ciencias, Dept Fis, Badajoz 06071, Spain
[4] Univ Zaragoza, Fac Ciencias, Serv Instrumentac Cientific, E-50009 Zaragoza, Spain
[5] Univ Zaragoza, Fac Ciencias, Inst Biocomputac & Fis Sistemas Complejos, E-50009 Zaragoza, Spain
关键词
universality; lattice; restoration; gauge-symmetry;
D O I
10.1016/S0370-2693(03)00382-4
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
It is shown that a bosonic formulation of the double-exchange model, one of the classical models for magnetism, generates dynamically a gauge-invariant phase in a finite region of the phase diagram. We use analytical methods, Monte Carlo simulations and finite-size scaling analysis. We study the transition line between that region and the paramagnetic phase. The numerical results show that this transition line belongs to the universality class of the antiferromagnetic RP2 model. The fact that one can define a universality class for the antiferromagnetic RP2 model, different from the one of the O (N) models, is puzzling and somehow contradicts naive expectations about universality. (C) 2003 Published by Elsevier Science B.V.
引用
收藏
页码:140 / 148
页数:9
相关论文
共 50 条
  • [21] Transport properties in a simplified double-exchange model
    Van-Nham, P
    Minh-Tien, T
    MODERN PHYSICS LETTERS B, 2003, 17 (01): : 39 - 47
  • [22] MAGNETORESISTANCE OF THE DOUBLE-EXCHANGE MODEL IN INFINITE DIMENSION
    FURUKAWA, N
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 1995, 64 (08) : 2734 - 2737
  • [23] Temperature dependence of the resistivity in the double-exchange model
    Ishizaka, S
    Ishihara, S
    PHYSICAL REVIEW B, 1999, 59 (13) : 8375 - 8378
  • [24] Global persistence exponent of the double-exchange model
    Fernandes, H. A.
    Drugowich de Felicio, J. R.
    PHYSICAL REVIEW E, 2006, 73 (05):
  • [25] Spin diffusion in the double-exchange model at T = ∞
    Fishman, RS
    PHYSICAL REVIEW B, 2000, 62 (06): : R3600 - R3603
  • [26] Conductance as a function of temperature in the double-exchange model
    Calderón, MJ
    Vergés, JA
    Brey, L
    PHYSICAL REVIEW B, 1999, 59 (06) : 4170 - 4175
  • [27] Dynamical mean-field theory of a simplified double-exchange system
    Izyumov, YA
    Letfulov, BM
    EUROPEAN MAGNETIC MATERIALS AND APPLICATIONS, 2001, 373-3 : 681 - 684
  • [28] A self-consistent formulation of the double-exchange model
    Bak, M
    Mancini, F
    PHYSICA B-CONDENSED MATTER, 2002, 312 : 732 - 733
  • [29] Electronic susceptibility and Curie temperature of the double-exchange model within dynamical mean-field theory
    Fishman, RS
    Jarrell, M
    JOURNAL OF APPLIED PHYSICS, 2003, 93 (10) : 7148 - 7150
  • [30] Double-exchange model for molecule-based magnets
    Erdin, Serkan
    PHYSICS LETTERS A, 2008, 372 (04) : 493 - 497