Number-conserving cellular automata I:: decidability

被引:59
|
作者
Durand, B
Formenti, E
Róka, Z
机构
[1] Lab Informat Fondamentale Marseille, F-13453 Marseille 13, France
[2] IUT Metz, LITA, F-57045 Metz, France
关键词
cellular automata; decidability;
D O I
10.1016/S0304-3975(02)00534-0
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We prove that definitions of number-conserving cellular automata found in literature are equivalent. A necessary and sufficient condition for cellular automata to be number-conserving is proved. Using this condition, we give a quasi-linear time algorithm to decide number-conservation. (C) 2002 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:523 / 535
页数:13
相关论文
共 50 条
  • [31] Fuzzy cellular automata with complete number-conserving rule as traffic-flow models with bottleneck
    Nishida, Yuki
    Watanabe, Sennosuke
    Fukuda, Akiko
    Yanagisawa, Daichi
    JSIAM LETTERS, 2022, 14 : 143 - 146
  • [32] 5-State Rotation-Symmetric Number-Conserving Cellular Automata are not Strongly Universal
    Imai, Katsunobu
    Ishizaka, Hisamichi
    Poupet, Victor
    CELLULAR AUTOMATA AND DISCRETE COMPLEX SYSTEMS (AUTOMATA 2014), 2015, 8996 : 31 - 43
  • [33] All binary number-conserving cellular automata based on adjacent cells are intrinsically one-dimensional
    Wolnik, Barbara
    De Baets, Bernard
    PHYSICAL REVIEW E, 2019, 100 (02)
  • [34] On enumeration of motion representable two-dimensional two-state number-conserving cellular automata
    Ishizaka, Hisamichi
    Takemura, Yohei
    Imai, Katsunobu
    PROCEEDINGS OF 2015 THIRD INTERNATIONAL SYMPOSIUM ON COMPUTING AND NETWORKING (CANDAR), 2015, : 412 - 417
  • [35] NUMBER-CONSERVING SETS
    ELLIS, PJ
    JACKSON, AD
    OSNES, E
    NUCLEAR PHYSICS A, 1972, A196 (01) : 161 - &
  • [36] Universal Time-Symmetric Number-Conserving Cellular Automaton
    Maldonado, Diego
    Moreira, Andres
    Gajardo, Anahi
    CELLULAR AUTOMATA AND DISCRETE COMPLEX SYSTEMS, AUTOMATA 2015, 2015, 9099 : 155 - 168
  • [37] Reversibility of number-conserving 1D cellular automata: Unlocking insights into the dynamics for larger state sets
    Wolnik, Barbara
    Dziemianczuk, Maciej
    Dzedzej, Adam
    De Baets, Bernard
    PHYSICA D-NONLINEAR PHENOMENA, 2022, 429
  • [38] Number conserving cellular automata II: dynamics
    Formenti, E
    Grange, A
    THEORETICAL COMPUTER SCIENCE, 2003, 304 (1-3) : 269 - 290
  • [39] A two-layer representation of four-state reversible number-conserving 2D cellular automata
    Dzedzej, Adam
    Wolnik, Barbara
    Dziemianczuk, Maciej
    Nenca, Anna
    Baetens, Jan M.
    De Baets, Bernard
    JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2019,
  • [40] INVERSION OF NUMBER-CONSERVING GAP EQUATIONS
    JENKINS, CA
    GREENBERG, NI
    BULLETIN OF THE AMERICAN PHYSICAL SOCIETY, 1979, 24 (01): : 22 - 22