Renormalizability and Newtonian potential in scale-invariant gravity

被引:1
|
作者
Myung, Yun Soo [1 ]
机构
[1] Inje Univ, Inst Basic Sci, Dept Comp Simulat, Gimhae 50834, South Korea
来源
基金
新加坡国家研究基金会;
关键词
Renormalizable higher-derivative gravity; Newtonian potential; scale-invariant; QUANTUM-GRAVITY;
D O I
10.1142/S0218271818501055
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
There is a conjecture that renormalizable higher-derivative gravity has a finite classical potential at the origin. In this work, we show clearly that the scale-invariant gravity (SIG) satisfies the conjecture. This gravity produces the better-behaved 1/k(4) UV behavior as needed for renormalizability. It turns out that the SIG has the linear classical potential of V proportional to r and it is a UV complete theory.
引用
收藏
页数:8
相关论文
共 50 条
  • [41] Gauss-Bonnet coupling constant in classically scale-invariant gravity
    Einhorn, Martin B.
    Jones, D. R. Timothy
    [J]. PHYSICAL REVIEW D, 2015, 91 (08):
  • [42] Erratum to: Einstein-Cartan gravity, matter, and scale-invariant generalization
    M. Shaposhnikov
    A. Shkerin
    I. Timiryasov
    S. Zell
    [J]. Journal of High Energy Physics, 2021
  • [43] Classically scale-invariant B-L model and conformal gravity
    Oda, Ichiro
    [J]. PHYSICS LETTERS B, 2013, 724 (1-3) : 160 - 164
  • [44] Isotropic universe with almost scale-invariant fourth-order gravity
    Schmidt, Hans-Juergen
    Singleton, Douglas
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 2013, 54 (06)
  • [45] PARAMETRIZATION OF SCALE-INVARIANT SELF-ADJOINT EXTENSIONS OF SCALE-INVARIANT SYMMETRIC OPERATORS
    Bekker, Miron B.
    Bohner, Martin J.
    Ugol'nikov, Alexander P.
    Voulov, Hristo
    [J]. METHODS OF FUNCTIONAL ANALYSIS AND TOPOLOGY, 2018, 24 (01): : 1 - 15
  • [46] Two scalar fields inflation from scale-invariant gravity with modified measure
    Benisty, David
    Guendelman, Eduardo I.
    [J]. CLASSICAL AND QUANTUM GRAVITY, 2019, 36 (09)
  • [47] Universal regular short distance behavior from an interaction with a scale-invariant gravity
    Haba, Z
    [J]. PHYSICS LETTERS B, 2002, 528 (1-2) : 129 - 132
  • [48] The scale-invariant scotogenic model
    Ahriche, Amine
    McDonald, Kristian L.
    Nasri, Salah
    [J]. JOURNAL OF HIGH ENERGY PHYSICS, 2016, (06):
  • [49] A scale-invariant feature map
    Fyfe, C
    [J]. NETWORK-COMPUTATION IN NEURAL SYSTEMS, 1996, 7 (02) : 269 - 275
  • [50] WAVES IN SCALE-INVARIANT SYSTEMS
    KUZNETSOV, AP
    KUZNETSOV, SP
    MELNIKOV, LA
    OSIN, AB
    ROZHNEV, AG
    [J]. IZVESTIYA VYSSHIKH UCHEBNYKH ZAVEDENII RADIOFIZIKA, 1983, 26 (04): : 415 - 420