Design of low bandgap tin-lead halide perovskite solar cells to achieve thermal, atmospheric and operational stability

被引:258
|
作者
Prasanna, Rohit [1 ,2 ]
Leijtens, Tomas [1 ,2 ,3 ]
Dunfield, Sean P. [2 ,4 ]
Raiford, James A. [5 ]
Wolf, Eli J. [1 ,2 ]
Swifter, Simon A. [1 ]
Werner, Jeremie [2 ,6 ]
Eperon, Giles E. [2 ]
de Paula, Camila [5 ]
Palmstrom, Axel F. [2 ]
Boyd, Caleb C. [1 ,2 ]
van Hest, Maikel F. A. M. [2 ]
Bent, Stacey F. [5 ]
Teeter, Glenn [2 ]
Berry, Joseph J. [2 ]
McGehee, Michael D. [2 ,4 ,6 ]
机构
[1] Stanford Univ, Mat Sci & Engn, Stanford, CA 94305 USA
[2] Natl Renewable Energy Lab, Golden, CO 80401 USA
[3] Swift Solar, San Carlos, CA USA
[4] Univ Colorado, Mat Sci & Engn Program, Boulder, CO 80309 USA
[5] Stanford Univ, Chem Engn, Stanford, CA 94305 USA
[6] Univ Colorado, Chem & Biol Engn, Boulder, CO 80309 USA
基金
美国国家科学基金会;
关键词
INDUCED DEGRADATION; THIN-FILMS; INTERFACE; GAP; SN;
D O I
10.1038/s41560-019-0471-6
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Low bandgap tin-lead iodide perovskites are key components of all-perovskite tandem solar cells, but can be unstable because tin is prone to oxidation. Here, to avoid a reaction with the most popular hole contact, we eliminated polyethylenedioxythioph ene:polystyrenesulfonate as a hole transport layer and instead used an upward band offset at an indium tin oxide-perovskite heterojunction to extract holes. To suppress oxidative degradation, we improved the morphology to create a compact and large-grained film. The tin content was kept at or below 50% and the device capped with a sputtered indium zinc oxide electrode. These advances resulted in a substantially improved thermal and environmental stability in a low bandgap perovskite solar cell without compromising the efficiency. The solar cells retained 95% of their initial efficiency after 1,000 h at 85 degrees C in air in the dark with no encapsulation and in a damp heat test (85 degrees C with 85% relative humidity) with encapsulation. The full initial efficiency was maintained under operation near the maximum power point and near 1 sun illumination for over 1,000h.
引用
收藏
页码:939 / 947
页数:9
相关论文
共 50 条
  • [41] Review on Chemical Stability of Lead Halide Perovskite Solar Cells
    Zhuang, Jing
    Wang, Jizheng
    Yan, Feng
    NANO-MICRO LETTERS, 2023, 15 (01)
  • [42] Review on Chemical Stability of Lead Halide Perovskite Solar Cells
    Jing Zhuang
    Jizheng Wang
    Feng Yan
    Nano-Micro Letters, 2023, 15 (06) : 226 - 259
  • [43] Enhancing the Efficiency and Stability of Tin-Lead Perovskite Solar Cells via Sodium Hydroxide Dedoping of PEDOT:PSS
    Wu, Dong-Tai
    Zhu, Wen-Xian
    Dong, Yueyao
    Daboczi, Matyas
    Ham, Gayoung
    Hsieh, Hsing-Jung
    Huang, Chi-Jing
    Xu, Weidong
    Henderson, Charlie
    Kim, Ji-Seon
    Eslava, Salvador
    Cha, Hyojung
    Macdonald, Thomas J.
    Lin, Chieh-Ting
    SMALL METHODS, 2024,
  • [44] Tin and Mixed Lead-Tin Halide Perovskite Solar Cells: Progress and their Application in Tandem Solar Cells
    Gu, Shuai
    Lin, Renxing
    Han, Qiaolei
    Gao, Yuan
    Tan, Hairen
    Zhu, Jia
    ADVANCED MATERIALS, 2020, 32 (27)
  • [45] Boosting All-Perovskite Tandem Solar Cells by Revitalizing the Buried Tin-Lead Perovskite Interface
    Li, Guang
    Wang, Chen
    Fu, Shiqiang
    Zheng, Wenwen
    Shen, Weicheng
    Jia, Peng
    Huang, Lishuai
    Zhou, Shun
    Zhou, Jin
    Wang, Cheng
    Guan, Hongling
    Zhou, Yuan
    Zhang, Xuhao
    Pu, Dexin
    Fang, Hongyi
    Lin, Qingxian
    Ai, Wei
    Chen, Weiqing
    Zeng, Guojun
    Wang, Ti
    Qin, Pingli
    Fang, Guojia
    Ke, Weijun
    ADVANCED MATERIALS, 2024, 36 (36)
  • [46] Facet orientation control of tin-lead perovskite for efficient all-perovskite tandem solar cells
    Wu, Yulin
    Wu, Shan
    Wang, Jinyao
    Lu, Jiangying
    Zheng, Xu
    Lu, Shudi
    Yue, Shizhong
    Liu, Kong
    Wang, Zhijie
    Qu, Shengchun
    JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY, 2025, 213 : 118 - 124
  • [47] Unveiling the nexus between irradiation and phase reconstruction in tin-lead perovskite solar cells
    Li, Wenbo
    Li, Zhe
    Zhou, Shun
    Gou, Yanzhuo
    Li, Guang
    Li, Jinghao
    Wang, Cheng
    Zeng, Yan
    Yan, Jiakai
    Li, Yan
    Dai, Wei
    Rong, Yaoguang
    Ke, Weijun
    Wang, Ti
    Xu, Hongxing
    NATURE COMMUNICATIONS, 2025, 16 (01)
  • [48] Tin-Lead Perovskite Solar Cells with Preferred Crystal Orientation by Buried Interface Approach
    Xiong, Jiaxing
    Wang, Qiuxiang
    Xing, Yanjun
    Gan, Xinlei
    Zhu, Wendong
    Xuan, Rong
    Huang, Like
    Liu, Xiaohui
    Zhu, Yuejin
    Zhang, Jing
    SMALL, 2024, 20 (48)
  • [49] Accelerated Redox Reactions Enable Stable Tin-Lead Mixed Perovskite Solar Cells
    He, Dongxu
    Chen, Peng
    Hao, Mengmeng
    Lyu, Miaoqiang
    Wang, Zhiliang
    Ding, Shanshan
    Lin, Tongen
    Zhang, Chengxi
    Wu, Xin
    Moore, Evan
    Steele, Julian A.
    Namdas, Ebinazar B.
    Bai, Yang
    Wang, Lianzhou
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2024, 63 (04)
  • [50] Optimized carrier extraction at interfaces for 23.6% efficient tin-lead perovskite solar cells
    Hu, Shuaifeng
    Otsuka, Kento
    Murdey, Richard
    Nakamura, Tomoya
    Minh Anh Truong
    Yamada, Takumi
    Handa, Taketo
    Matsuda, Kazuhiro
    Nakano, Kyohei
    Sato, Atsushi
    Marumoto, Kazuhiro
    Tajima, Keisuke
    Kanemitsu, Yoshihiko
    Wakamiya, Atsushi
    ENERGY & ENVIRONMENTAL SCIENCE, 2022, 15 (05) : 2096 - 2107