Linear prediction in lossless compression of hyperspectral images

被引:36
|
作者
Mielikainen, J [1 ]
Toivanen, P [1 ]
Kaarna, A [1 ]
机构
[1] Lappeenranta Univ Technol, Dept Informat Technol, FIN-53851 Lappeenranta, Finland
关键词
lossless compression; image compression; hyperspectral images; linear prediction; least-squares optimization;
D O I
10.1117/1.1557174
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
This study proposes an interband version of the linear prediction approach for hyperspectral images. Linear prediction represents one of the best performing and most practical and general purpose lossless image compression techniques known today. The interband linear prediction method consists of two stages: predictive decorrelation producing residuals, and entropy coding of these residuals. Our method achieved an average compression ratio of 3.23 using 13 airborne visible/infrared imaging spectrometer (AVIRIS) images. (C) 2003 Society of Photo-Optical Instrumentation Engineers.
引用
收藏
页码:1013 / 1017
页数:5
相关论文
共 50 条
  • [41] Lossless Compression of Hyperspectral Images Using Multiband Lookup Tables
    Aiazzi, Bruno
    Baronti, Stefano
    Alparone, Luciano
    IEEE SIGNAL PROCESSING LETTERS, 2009, 16 (06) : 481 - 484
  • [42] Linear Data Compression of Hyperspectral Images
    Tanji, Kaori
    Itoh, Hayato
    Imiya, Atsushi
    Manago, Naohito
    Kuze, Hiroaki
    2017 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION WORKSHOPS (ICCVW 2017), 2017, : 3001 - 3007
  • [43] Distributed Lossless Compression Algorithm for Hyperspectral Images Based on Classification
    Huang, Bingchao
    Nian, Yongjian
    Wan, Jianwei
    SPECTROSCOPY LETTERS, 2015, 48 (07) : 528 - 535
  • [44] GPU Acceleration of Clustered DPCM for Lossless Compression of Hyperspectral Images
    Li, Jiaojiao
    Wu, Jiaji
    Jeon, Gwanggil
    IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2020, 16 (05) : 2906 - 2916
  • [45] Partitioned vector quantization: Application to lossless compression of hyperspectral images
    Motta, G
    Rizzo, F
    Storer, JA
    2003 INTERNATIONAL CONFERENCE ON MULTIMEDIA AND EXPO, VOL I, PROCEEDINGS, 2003, : 553 - 556
  • [46] Distributed Source Coding Techniques for Lossless Compression of Hyperspectral Images
    Enrico Magli
    Mauro Barni
    Andrea Abrardo
    Marco Grangetto
    EURASIP Journal on Advances in Signal Processing, 2007
  • [47] Partitioned vector quantization: Application to lossless compression of hyperspectral images
    Motta, G
    Rizzo, F
    Storer, JA
    2003 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, VOL III, PROCEEDINGS: IMAGE & MULTIDIMENSIONAL SIGNAL PROCESSING SIGNAL, PROCESSING EDUCATION, 2003, : 241 - 244
  • [48] Band regrouping-based lossless compression of hyperspectral images
    He, Mingyi
    Bai, Lin
    Dai, Yuchao
    Zhang, Jing
    JOURNAL OF APPLIED REMOTE SENSING, 2010, 4
  • [49] Distributed source coding techniques for lossless compression of hyperspectral images
    Magli, Enrico
    Barni, Mauro
    Abrardo, Andrea
    Grangetto, Andmarco
    EURASIP JOURNAL ON ADVANCES IN SIGNAL PROCESSING, 2007, 2007 (1)
  • [50] Classified Coset Coding Based Lossless Compression of Hyperspectral Images
    Juan, Song
    Li, Yunsong
    Liu, Haiying
    Wu, Xianyun
    Wang, Keyan
    SATELLITE DATA COMPRESSION, COMMUNICATIONS, AND PROCESSING VII, 2011, 8157