Electrical resistivity dip in SbxVyMozOt phases

被引:5
|
作者
Gron, T. [1 ]
Filipek, E. [2 ]
Mazur, S. [1 ]
Duda, H. [1 ]
Pacyna, A. W. [3 ]
Mydlarz, T. [4 ]
Baerner, K. [5 ]
机构
[1] Univ Silesia, Inst Phys, PL-40007 Katowice, Poland
[2] W Pomeranian Univ Technol, Dept Inorgan & Analyt Chem, PL-71065 Szczecin, Poland
[3] Polish Acad Sci, Henryk Niewodniczanski Inst Nucl Phys, PL-31342 Krakow, Poland
[4] Int Lab High Magnet Fields & Low Temp, PL-53529 Wroclaw, Poland
[5] Univ Gottingen, Dept Phys, D-37077 Gottingen, Germany
关键词
electronic transport; magnetic properties; polarons; oxides; SOLID-SOLUTIONS; INSULATOR; SYSTEM; CR2V4-XMOXO13+0.5X; CONDUCTIVITY; TRANSITIONS; MOLYBDENUM; NIS2-XSEX; METALS; SBVO5;
D O I
10.1080/09500831003781592
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Electrical resistivity dips have been discovered in the temperature range 100-500 K both in the SbVO4.96 matrix and the SbxVyMozOt phases for 10 mol% solubility of MoO3 in SbVO5. As the Sb content increases and simultaneously the V content decreases, the value of the resistivity at the dip, rho d, decreases and shifts the dip to higher temperatures. The magnetic measurements showed a spontaneous magnetization and parasitic magnetism of the solid solutions under study. Characteristic for parasitic magnetism is a small value of the magnetic moment, here 0.014 mu(B)/f.u. at 4.2 K and at a magnetic field of 14 T as well as a small value of the mass susceptibility, here 10(-5) cm(3)/g. The value of the Neel temperature, T-N <= 8 K, and the Curie-Weiss temperature, theta(CW) <= -208 K, indicate a collinear antiferromagnetic (AFM) order. We suggest that neither the magnetism nor the Mo-content can be correlated with the resistivity anomalies. Therefore, these effects may rather be interpreted in terms of a small-polaron gas in the resistivity dip area. Alternatively, they could mark a lattice/electronic entropy-driven incomplete metal-insulator transition.
引用
收藏
页码:519 / 531
页数:13
相关论文
共 50 条
  • [31] ELECTRICAL RESISTIVITY OF VOIDS
    MARTIN, JW
    PAETSCH, R
    JOURNAL OF PHYSICS F-METAL PHYSICS, 1973, 3 (05): : 907 - 917
  • [32] ELECTRICAL RESISTIVITY OF REFRACTORIES
    WALLACE, RW
    RUH, E
    AMERICAN CERAMIC SOCIETY BULLETIN, 1966, 45 (04): : 447 - &
  • [33] ELECTRICAL RESISTIVITY OF POLYMERS
    WARFIELD, RW
    PETREE, MC
    SPE TRANSACTIONS, 1961, 1 (02): : 80 - 85
  • [34] ELECTRICAL RESISTIVITY OF SCANDIUM
    COLVIN, RV
    ARAJS, S
    JOURNAL OF APPLIED PHYSICS, 1963, 34 (02) : 286 - &
  • [35] The electrical resistivity of refractories
    Henry, AV
    JOURNAL OF THE AMERICAN CERAMIC SOCIETY, 1924, 7 (10) : 764 - 782
  • [36] Deposition and photo-induced electrical resistivity of dip-coated NiO thin films from a precipitation process
    Marcelo R. da Silva
    Luis V. A. Scalvi
    Luiz H. Dall’Antonia
    Dayse I. dos Santos
    Journal of Materials Science: Materials in Electronics, 2013, 24 : 1823 - 1831
  • [37] ELECTRICAL RESISTIVITY MEASUREMENTS
    不详
    GLASS TECHNOLOGY, 1968, 9 (04): : 87 - +
  • [38] THEORY OF ELECTRICAL RESISTIVITY
    KENKRE, VM
    PHYSICAL REVIEW A, 1972, 6 (02): : 769 - &
  • [39] Electrical Resistivity of Concrete
    Layssi, Hamed
    Ghods, Pouria
    Alizadeh, Aali R.
    Salehi, Mustafa
    Concrete International, 2015, 27 (05) : 41 - 46
  • [40] Measuring soil electrical resistivity using a resistivity box and a resistivity probe
    Sreedeep, S
    Reshma, AC
    Singh, DN
    GEOTECHNICAL TESTING JOURNAL, 2004, 27 (04): : 411 - 415