Finding a Low-dimensional Piece of a Set of Integers

被引:4
|
作者
Manners, Frederick R. W. M. [1 ]
机构
[1] Univ Oxford, Math Inst, Oxford OX2 6GG, England
基金
英国工程与自然科学研究理事会;
关键词
YOUNGS INEQUALITY; LARGE VALUES;
D O I
10.1093/imrn/rnw153
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show that a finite set of integers A subset of Z with |A + A| = K|A| contains a large piece X subset of A with Freiman dimension O(log K), where large means |A|/|X| << exp(O(log(2) K)). This can be thought of as a major quantitative improvement on Fre. iman's dimension lemma; or as a "weak" Freiman-Ruzsa theorem with almost polynomial bounds. The methods used, centred around an "additive energy increment strategy", differ from the usual tools in this area and may have further potential. Most of our argument takes place over F-2(n), which is itself curious. There is a possibility that the above bounds could be improved, assuming sufficiently strong results in the spirit of the Polynomial Freiman Ruzsa Conjecture over finite fields.
引用
收藏
页码:4673 / 4703
页数:31
相关论文
共 50 条
  • [31] Component SPD matrices: A low-dimensional discriminative data descriptor for image set classification
    Chen K.-X.
    Wu X.-J.
    Wu, Xiao-Jun (xiaojun_wu_jnu@163.com), 2018, Tsinghua University Press (04): : 245 - 252
  • [32] Ultradilute Low-Dimensional Liquids
    Petrov, D. S.
    Astrakharchik, G. E.
    PHYSICAL REVIEW LETTERS, 2016, 117 (10)
  • [33] GaN Low-dimensional Structures
    Dyadenchuk, A. F.
    Kidalov, V. V.
    JOURNAL OF NANO- AND ELECTRONIC PHYSICS, 2014, 6 (04)
  • [34] LOW-DIMENSIONAL EXCITON REACTIONS
    KOPELMAN, R
    PHILOSOPHICAL MAGAZINE B-PHYSICS OF CONDENSED MATTER STATISTICAL MECHANICS ELECTRONIC OPTICAL AND MAGNETIC PROPERTIES, 1987, 56 (06): : 717 - 723
  • [35] Low-dimensional quantum devices
    Smith, CG
    REPORTS ON PROGRESS IN PHYSICS, 1996, 59 (02) : 235 - 282
  • [36] On low-dimensional homology in categories
    Everaert, Tomas
    Gran, Marino
    HOMOLOGY HOMOTOPY AND APPLICATIONS, 2007, 9 (01) : 275 - 293
  • [37] Superconductivity in low-dimensional structures
    Huhtinen, H
    Laiho, R
    Paturi, P
    PHYSICS OF LOW-DIMENSIONAL STRUCTURES, 1998, 12 : 93 - 109
  • [38] Low-dimensional thermoelectric materials
    M. S. Dresselhaus
    G. Dresselhaus
    X. Sun
    Z. Zhang
    S. B. Cronin
    T. Koga
    Physics of the Solid State, 1999, 41 : 679 - 682
  • [39] Low-dimensional ZnO nanomaterials
    Yang Sen
    Ni Yonghong
    PROGRESS IN CHEMISTRY, 2007, 19 (10) : 1510 - 1516
  • [40] On a low-dimensional model for ferromagnetism
    Iyer, RV
    Krishnaprasad, PS
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2005, 61 (08) : 1447 - 1482