A Urysohn-type theorem and the Bishop-Phelps-Bollobas theorem for holomorphic functions

被引:6
|
作者
Kim, Sun Kwang [1 ]
Lee, Han Ju [2 ]
机构
[1] Chungbuk Natl Univ, Dept Math, 1 Chungdae Ro, Cheongju 28644, Chungbuk, South Korea
[2] Dongguk Univ Seoul, Dept Math Educ, 30 Pildong Ro 1 Gil, Seoul 04620, South Korea
基金
新加坡国家研究基金会;
关键词
Peak point; Strong peak points; Uryshon lemma; Holomorphic functions; Bishop-Phelps-Bollobas theorem;
D O I
10.1016/j.jmaa.2019.123393
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A Urysohn-type theorem is introduced for a subalgebra of the algebra C-b (Omega) of all bounded complex-valued continuous functions on a Hausdorff topological space Omega. With use of this theorem, it is shown that a type of the Bishop-Phelps-Bollobas theorem holds for certain classes of holomorphic functions on the unit ball of a complex Banach space X if X is either a locally uniformly convex space or a locally c-uniformly convex, order-continuous sequence space. (C) 2019 Elsevier Inc. All rights reserved.
引用
收藏
页数:8
相关论文
共 50 条
  • [31] Further Properties of the Bishop-Phelps-Bollobas Moduli
    Chica, Mario
    Kadets, Vladimir
    Martin, Miguel
    Meri, Javier
    MEDITERRANEAN JOURNAL OF MATHEMATICS, 2016, 13 (05) : 3173 - 3183
  • [32] On the Pointwise Bishop-Phelps-Bollobas Property for Operators
    Dantas, Sheldon
    Kadets, Vladimir
    Kim, Sun Kwang
    Lee, Han Ju
    Martin, Miguel
    CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 2019, 71 (06): : 1421 - 1443
  • [33] Bishop-Phelps-Bollobas property for bilinear forms on spaces of continuous functions
    Kim, Sun Kwang
    Lee, Han Ju
    Martin, Miguel
    MATHEMATISCHE ZEITSCHRIFT, 2016, 283 (1-2) : 157 - 167
  • [34] The Bishop-Phelps-Bollobas property for operators between spaces of continuous functions
    Acosta, Maria D.
    Becerra-Guerrero, Julio
    Choi, Yun Sung
    Ciesielski, Maciej
    Kim, Sun Kwang
    Lee, Han Ju
    Lourenco, Mary Lilian
    Martin, Miguel
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2014, 95 : 323 - 332
  • [35] The Bishop-Phelps-Bollobas property for bilinear forms and polynomials
    Acosta, Maria D.
    Becerra-Guerrero, Julio
    Choi, Yun Sung
    Garcia, Domingo
    Kim, Sun Kwang
    Lee, Han Ju
    Maestre, Manuel
    JOURNAL OF THE MATHEMATICAL SOCIETY OF JAPAN, 2014, 66 (03) : 957 - 979
  • [36] The Bishop-Phelps-Bollobas properties in complex Hilbert spaces
    Choi, Yun Sung
    Dantas, Sheldon
    Jung, Mingu
    MATHEMATISCHE NACHRICHTEN, 2021, 294 (11) : 2105 - 2120
  • [37] AN URYSOHN-TYPE THEOREM UNDER A DYNAMICAL CONSTRAINT
    Fathi, Albert
    JOURNAL OF MODERN DYNAMICS, 2016, 10 : 331 - 338
  • [38] The Bishop-Phelps-Bollobas theorem for operators from L1(μ) to Banach spaces with the Radon-Nikodym property
    Choi, Yun Sung
    Kim, Sun Kwang
    JOURNAL OF FUNCTIONAL ANALYSIS, 2011, 261 (06) : 1446 - 1456
  • [39] Strong subdifferentiability and local Bishop-Phelps-Bollobas properties
    Dantas, Sheldon
    Kim, Sun Kwang
    Lee, Han Ju
    Mazzitelli, Martin
    REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2020, 114 (02)
  • [40] THE BISHOP-PHELPS-BOLLOBAS VERSION OF LINDENSTRAUSS PROPERTIES A AND B
    Aron, Richard
    Choi, Yun Sung
    Kim, Sun Kwang
    Lee, Han Ju
    Martin, Miguel
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2015, 367 (09) : 6085 - 6101