Production of H2-Rich Syngas from Oxygen-Steam Gasification of Biomass Using Modified Red Mud Extract as Catalyst

被引:2
|
作者
Qi, Tian [1 ]
Lei, Tingzhou [2 ]
Zhang, Quanguo [3 ]
Jin, Tingxiang [1 ]
Zhu, Shiquan [1 ]
Zhu, Youjian [1 ]
Hu, Xiaorui [1 ]
Cheng, Chuanxiao [1 ]
机构
[1] Zhengzhou Univ Light Ind, Sch Energy & Power Engn, Zhengzhou 450002, Peoples R China
[2] Changzhou Univ, Inst Urban & Rural Min, Changzhou 213164, Peoples R China
[3] Henan Agr Univ, Coll Mech & Elect Engn, Key Lab New Mat & Facil Rural Renewable Energy, Minist Agr & Rural Affairs, Zhengzhou 450002, Peoples R China
关键词
Biomass; H-2-Rich Syngas; Oxygen-Steam Gasification; Modified Red Mud Extract; Catalyst; CO2; GASIFICATION; METAL-CATALYSTS; FAST PYROLYSIS; FLUIDIZED-BED; TAR; WASTE; MODEL; RATES;
D O I
10.1166/jbmb.2021.2054
中图分类号
O69 [应用化学];
学科分类号
081704 ;
摘要
Oxygen-steam gasification of biomass catalyzed by modified iron-rich red mud extract is firstly performed in our work. During the impregnation of the modified red mud extract (MRME), the pore structure characteristics and thermal behavior of the maize straw changed significantly. The influence of MRME on syngas quality, gas yield, and thermal efficiency were performed in a lab-scale gasification reactor. The results showed that higher temperature, sufficient MRME addition, appropriate equivalent ratio (ER) and a small amount of steam all promoted syngas quality and energy conversion. For maximum economic efficiency, the optimal rate of MRME addition is 30% weight ratio to maize straw. The optimal level of ER was found to be 0.23, and the maximum energy conversion ratio was 82.4% at 800 degrees C with optimal levels of MRME addition and ER. Compared with the raw maize straw gasification at the same operating condition, the content of H-2 increased from 17.32% to 33.77%, and CO raised from 22.89% to 35.11%. It seems that the red mud extract catalyst has the potential for using as an economic efficiency industrially catalyst for high quality and H-2-riched syngas production from biomass gasification.
引用
收藏
页码:278 / 286
页数:9
相关论文
共 50 条
  • [21] Assessment of sewage sludge gasification in supercritical water for H2-rich syngas production
    Hantoko, Dwi
    Antoni
    Kanchanatip, Ekkachai
    Yan, Mi
    Weng, Zhouchao
    Gao, Zengliang
    Zhong, Yingjie
    PROCESS SAFETY AND ENVIRONMENTAL PROTECTION, 2019, 131 : 63 - 72
  • [22] Machine learning aided supercritical water gasification for H2-rich syngas production with process optimization and catalyst screening
    Li, Jie
    Pan, Lanjia
    Suvarna, Manu
    Wang, Xiaonan
    CHEMICAL ENGINEERING JOURNAL, 2021, 426
  • [23] High quality H2-rich syngas production from pyrolysis-gasification of biomass and plastic wastes by Ni-Fe@Nanofibers/Porous carbon catalyst
    Zhang, Shuping
    Zhu, Shuguang
    Zhang, Houlei
    Liu, Xinzhi
    Xiong, Yuanquan
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2019, 44 (48) : 26193 - 26203
  • [24] Novel Process for Production of H2-Rich Nitrogen-Free Syngas from Coal Using a Cu/Fe-Alumina Catalyst and Steam
    Siriwardane, Ranjani
    Riley, Jarrett
    Atallah, Chris
    ENERGY & FUELS, 2024, 38 (16) : 15116 - 15130
  • [25] Nickel-loaded red mud catalyst for steam gasification of bamboo sawdust to produce hydrogen-rich syngas
    Dong, Wenyan
    Li, Songhong
    Wang, Mingshun
    Yuan, Xing
    Cao, Yang
    Ao, Xianquan
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2023, 48 (57) : 21624 - 21635
  • [26] H2-rich syngas production from air gasification of date palm waste: an experimental and modeling investigation
    Kabli, Mohammad R.
    Ali, Arshid M.
    Inayat, Muddasser
    Zahrani, Abdulrahim A.
    Shahzad, Khurram
    Shahbaz, Muhammad
    Sulaiman, Shaharin A.
    BIOMASS CONVERSION AND BIOREFINERY, 2022,
  • [27] Oxygen blown steam gasification of different kinds of lignocellulosic biomass for the production of hydrogen-rich syngas
    Mu, Qingnan
    Aleem, Rao Danish
    Liu, Chang
    Elendu, Collins Chimezie
    Cao, Changqing
    Duan, Pei-Gao
    RENEWABLE ENERGY, 2024, 232
  • [28] Thermodynamic equilibrium analysis of H2-rich syngas production via sorption-enhanced chemical looping biomass gasification
    Chein, Rei-Yu
    Hsu, Wen-Huai
    RENEWABLE ENERGY, 2020, 153 : 117 - 129
  • [29] Bifunctional catalyst cracking gasification of vacuum residue for coproduction of light olefins and H2-rich syngas
    Tang, Ruiyuan
    Tian, Yuanyu
    Qiao, Yingyun
    PROCEEDINGS OF THE 2017 5TH INTERNATIONAL CONFERENCE ON MACHINERY, MATERIALS AND COMPUTING TECHNOLOGY (ICMMCT 2017), 2017, 126 : 188 - 191
  • [30] Biomass gasification coupled with producer gas cleaning, bottling and HTS catalyst treatment for H2-rich gas production
    Patra, Tapas Kumar
    Sheth, Pratik N.
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2019, 44 (23) : 11602 - 11616