共 50 条
Inactivation of voltage-gated cardiac K+ channels
被引:126
|作者:
Rasmusson, RL
Morales, MJ
Wang, SM
Liu, SG
Campbell, DL
Brahmajothi, MV
Strauss, HC
机构:
[1] Duke Univ, Med Ctr, Dept Med, Durham, NC 27710 USA
[2] Duke Univ, Med Ctr, Dept Pharmacol, Durham, NC 27710 USA
[3] Duke Univ, Sch Engn, Dept Biomed Engn, Durham, NC 27706 USA
关键词:
human ether-a-go-go-related gene;
long QT syndrome;
antiarrhythmic drug binding;
C-type inactivation;
beta subunit;
D O I:
10.1161/01.RES.82.7.739
中图分类号:
R5 [内科学];
学科分类号:
1002 ;
100201 ;
摘要:
Inactivation is the process by which an open channel enters a stable nonconducting conformation after a depolarizing change in membrane potential. Inactivation is ii widespread property of many different types of voltage-gated ion channels. Recent advances in the molecular biology of K+ channels have elucidated two mechanistically distinct types of inactivation, N-type and C-type. N-type inactivation involves occlusion of the intracellular mouth of the pore through binding of a short segment of residues at the extreme N-terminal. In contrast to this "tethered ball" mechanism of N-type inactivation, C-type inactivation involves movement of conserved core domain residues that result in closure of the external mouth of the pore. Although C-type inactivation can show rapid kinetics that approach those observed for N-type inactivation, it is often thought of as a slowly developing and slowly recovering process. Current models of C-type inactivation also suggest that this process involves a relatively localized change in conformation of residues near the external mouth of the permeation pathway. The rate of C-type inactivation and recovery can be strongly influenced by other factors, such as N-type inactivation, drug binding, and changes in [K+](0). These interactions make C-type inactivation an important biophysical process in determining such physiologically important properties as refractoriness and drug binding. C-type inactivation is currently viewed as arising from small-scale rearrangements at the external mouth of the pore. This review will examine the multiplicity of interactions of C-type inactivation with N-terminal-mediated inactivation and drug binding that suggest that our current view of C-type inactivation is incomplete. This review will suggest that C-type inactivation must involve larger-scale movements of transmembrane-spanning domains and that such movements contribute to the diversity of kinetic properties observed for C-type inactivation.
引用
收藏
页码:739 / 750
页数:12
相关论文