A Novel Short-Term Load Forecasting Method by Combining the Deep Learning With Singular Spectrum Analysis

被引:19
|
作者
Manh-Hai Pham [1 ]
Minh-Ngoc Nguyen [2 ]
Wu, Yuan-Kang [2 ]
机构
[1] Elect Power Univ, Dept Energy Technol, Hanoi 11917, Vietnam
[2] Natl Chung Cheng Univ, Dept Elect Engn, Min Hsiung 62102, Taiwan
关键词
Forecasting; Time series analysis; Neural networks; Load forecasting; Spectral analysis; Matrix decomposition; Power systems; singular spectrum analysis; deep-learning neural network; long short-term memory;
D O I
10.1109/ACCESS.2021.3078900
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
One of the major issues about the operation of power systems is the prediction of load demand. Moreover, load forecasting is of prime concern to system operators. Recently, the integration of power system elements, such as renewable energy sources, energy storages and electricity vehicle, brings more challenges, particularly when there are large fluctuations in forecasting cycle. This study concentrates on short-term load demand forecasting and proposes a hybrid method that combines Singular Spectrum Analysis (SSA) with deep-learning Neural Network (NN) techniques. In the beginning, the SSA technique is applied as an initial filter to remove noises. Next, a hybrid neural network, including Backpropagation Neural Network (BPNN) and Long Short-Term Memory (LSTM), is developed and trained. Then, the trained network is used as the core forecasting algorithm. Each SSA has different forms to combine with neural networks. The performance of the proposed forecasting algorithm is demonstrated using the power demand data recorded in Taiwan. Furthermore, this study compares the forecasting results by five models, including SSA, SSA-BPNN, ANN, SSA-LSTM, Wavelet Neural Network (WNN) and LSTM. The forecasting results reveal that the proposed forecasting model using Singular Spectrum Analysis provides the best performance on load forecasts.
引用
下载
收藏
页码:73736 / 73746
页数:11
相关论文
共 50 条
  • [41] Short-Term Load Forecasting of Integrated Energy Systems Based on Deep Learning
    Huan, Jiajia
    Hong, Haifeng
    Pan, Xianxian
    Sui, Yu
    Zhang, Xiaohui
    Jiang, Xuedong
    Wang, Chaoqun
    2020 5TH ASIA CONFERENCE ON POWER AND ELECTRICAL ENGINEERING (ACPEE 2020), 2020, : 16 - 20
  • [42] A deep learning model for short-term power load and probability density forecasting
    Guo, Zhifeng
    Zhou, Kaile
    Zhang, Xiaoling
    Yang, Shanlin
    ENERGY, 2018, 160 : 1186 - 1200
  • [43] Short-Term Load Forecasting in Smart Grids Using Hybrid Deep Learning
    Asiri, Mashael M.
    Aldehim, Ghadah
    Alotaibi, Faiz Abdullah
    Alnfiai, Mrim M.
    Assiri, Mohammed
    Mahmud, Ahmed
    IEEE ACCESS, 2024, 12 : 23504 - 23513
  • [44] An effective deep learning neural network model for short-term load forecasting
    Li, Ning
    Wang, Lu
    Li, Xinquan
    Zhu, Qing
    CONCURRENCY AND COMPUTATION-PRACTICE & EXPERIENCE, 2020, 32 (07):
  • [45] Research on Short-term Load Forecasting of Power System Based on Deep Learning
    Li, Lei
    Jia, Kunlin
    PROCEEDINGS OF 2024 INTERNATIONAL CONFERENCE ON POWER ELECTRONICS AND ARTIFICIAL INTELLIGENCE, PEAI 2024, 2024, : 251 - 255
  • [46] Short-Term Load Forecasting Based on VMD and Combined Deep Learning Model
    Wang, Nier
    Xue, Sheng
    Li, Zhanming
    IEEJ TRANSACTIONS ON ELECTRICAL AND ELECTRONIC ENGINEERING, 2023, 18 (07) : 1067 - 1075
  • [47] Multiscale-integrated deep learning approaches for short-term load forecasting
    Yang, Yang
    Gao, Yuchao
    Wang, Zijin
    Li, Xi'an
    Zhou, Hu
    Wu, Jinran
    INTERNATIONAL JOURNAL OF MACHINE LEARNING AND CYBERNETICS, 2024, : 6061 - 6076
  • [48] Short-Term Load Forecasting Based on Frequency Domain Decomposition and Deep Learning
    Zhang, Qian
    Ma, Yuan
    Li, Guoli
    Ma, Jinhui
    Ding, Jinjin
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2020, 2020
  • [49] Deep Learning Based on Multi-Decomposition for Short-Term Load Forecasting
    Kim, Seon Hyeog
    Lee, Gyul
    Kwon, Gu-Young
    Kim, Do-In
    Shin, Yong-June
    ENERGIES, 2018, 11 (12)
  • [50] Short-Term Load Forecasting With Deep Residual Networks
    Chen, Kunjin
    Chen, Kunlong
    Wang, Qin
    He, Ziyu
    Hu, Jun
    He, Jinliang
    IEEE TRANSACTIONS ON SMART GRID, 2019, 10 (04) : 3943 - 3952