Antimagic labeling and canonical decomposition of graphs

被引:8
|
作者
Barrus, Michael D. [1 ]
机构
[1] Black Hills State Univ, Dept Math, Spearfish, SD 57799 USA
关键词
Antimagic labeling; Split graph; Canonical decomposition; Combinatorial problems; GRIDS;
D O I
10.1016/j.ipl.2010.01.006
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
An antimagic labeling of a connected graph with in edges is an injective assignment of labels from {1,.... m} to the edges such that the sums of incident labels are distinct at distinct vertices. Hartsfield and Ringel conjectured that every connected graph other than K(2) has an antimagic labeling. We prove this for the classes of split graphs and graphs decomposable under the canonical decomposition introduced by Tyshkevich. As a consequence, we provide a sufficient condition on graph degree sequences to guarantee an antimagic labeling. (C) 2010 Elsevier B.V. All rights reserved.
引用
收藏
页码:261 / 263
页数:3
相关论文
共 50 条
  • [21] AN ALGORITHMIC APPROACH TO ANTIMAGIC LABELING OF EDGE CORONA GRAPHS
    Nivedha, D.
    Yamini, S. Devi
    arXiv, 2022,
  • [22] Construction of Antimagic Labeling for the Cartesian Product of Regular Graphs
    Phanalasy, Oudone
    Miller, Mirka
    Iliopoulos, Costas S.
    Pissis, Solon P.
    Vaezpour, Elaheh
    MATHEMATICS IN COMPUTER SCIENCE, 2011, 5 (01) : 81 - 87
  • [23] AN ALGORITHMIC APPROACH TO ANTIMAGIC LABELING OF EDGE CORONA GRAPHS
    Nivedha, D.
    Yamini, S. devi
    TWMS JOURNAL OF APPLIED AND ENGINEERING MATHEMATICS, 2023, 13 : 61 - 73
  • [24] PRIME - ANTIMAGIC LABELING OF GRAPHS IN POWER MANAGEMENT SYSTEM
    Anand, M. C. J.
    Chitra, G.
    Swamy, N.
    Sudharani, R.
    TWMS JOURNAL OF APPLIED AND ENGINEERING MATHEMATICS, 2024, 14 (04): : 1328 - 1337
  • [25] (a, d)-Distance Antimagic Labeling of Some Types of Graphs
    Semeniuta, M. F.
    CYBERNETICS AND SYSTEMS ANALYSIS, 2016, 52 (06) : 950 - 955
  • [26] ON LOCAL ANTIMAGIC TOTAL LABELING OF COMPLETE GRAPHS AMALGAMATION
    Lau, Gee-Choon
    Shiu, Wai Chee
    OPUSCULA MATHEMATICA, 2023, 43 (03) : 429 - 453
  • [27] Canonical decomposition, realizer, Schnyder labeling and orderly spanning trees of plane graphs
    Miura, K
    Azuma, M
    Nishizeki, T
    INTERNATIONAL JOURNAL OF FOUNDATIONS OF COMPUTER SCIENCE, 2005, 16 (01) : 117 - 141
  • [28] Canonical decomposition, realizer, Schnyder labeling and orderly spanning trees of plane graphs
    Miura, K
    Azuma, M
    Nishizeki, T
    COMPUTING AND COMBINATORICS, PROCEEDINGS, 2004, 3106 : 309 - 318
  • [29] On Super Edge-Antimagic Total Labeling of Toeplitz Graphs
    Baca, Martin
    Bashir, Yasir
    Nadeem, Muhammad Faisal
    Shabbir, Ayesha
    MATHEMATICS IN THE 21ST CENTURY, 2015, 98 : 1 - 10
  • [30] List-antimagic labeling of vertex-weighted graphs
    Berikkyzy, Zhanar
    Brandt, Axel
    Jahanbekam, Sogol
    Larsen, Victor
    Rorabaugh, Danny
    DISCRETE MATHEMATICS AND THEORETICAL COMPUTER SCIENCE, 2021, 23 (03):