Neutrino Mass Bounds in the Era of Tension Cosmology

被引:43
|
作者
Di Valentino, Eleonora [1 ]
Melchiorri, Alessandro [2 ,3 ]
机构
[1] Univ Sheffield, Sch Math & Stat, Hounsfield Rd, Sheffield S3 7RH, S Yorkshire, England
[2] Univ Roma La Sapienza, Phys Dept, Ple Aldo Moro 2, I-00185 Rome, Italy
[3] Univ Roma La Sapienza, Ist Nazl Fis Nucl, Ple Aldo Moro 2, I-00185 Rome, Italy
关键词
Cosmological neutrinos (338); Cosmological parameters (339); SCALE; SAMPLE;
D O I
10.3847/2041-8213/ac6ef5
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
The measurements of cosmic microwave background (CMB) anisotropies made by the Planck satellite provide extremely tight upper bounds on the total neutrino mass scale (Sigma m(nu) < 0.26 eV at 95% C.L.). However, as recently discussed in the literature, the Planck data show anomalies that could affect this result. Here we provide new constraints on neutrino masses using the recent and complementary CMB measurements from the Atacama Cosmology Telescope DR4 and the South Pole Telescope SPT-3G experiments. We found that both the ACT-DR4 and SPT-3G data, when combined with WMAP, mildly suggest a neutrino mass with Sigma m(nu) = 0.68 +/- 0.31 and 0.46(-0.36)(+0.14) eV at 68% C.L., respectively. Moreover, when CMB lensing from the Planck experiment is included, the ACT-DR4 data now indicate a neutrino mass above the two standard deviations, with Sigma m(nu) = 0.60(-0.50)(+0.44) eV at 95% C.L., while WMAP+SPT-3G provides a weak upper limit of Sigma m(nu) < 0.37 eV at 68% C.L. Interestingly, these results are consistent with the Planck CMB+lensing constraint of Sigma m(nu) = 0.41(-0.25)(+0.17) eV at 68% C.L. when variations in the A(lens) parameter are considered. We also show that these indications are still present after the inclusion of BAO or Type Ia supernova data in extended cosmologies that are usually considered to solve the so-called Hubble tension. In this respect, we note that in these models, CMB+BAO constraints prefer a higher neutrino mass for higher values of the Hubble constant. A combination of ACT-DR4, WMAP, BAO, and constraints on the Hubble constant from the SHOES collaboration gives Sigma m(nu) = 0.39(+0.25)(+0.13) eV at 68% C.L. in extended cosmologies.
引用
收藏
页数:5
相关论文
共 50 条
  • [31] Neutrino Mass Model in the LHC Era
    Mohapatra, Rabindra N.
    NUCLEAR PHYSICS B-PROCEEDINGS SUPPLEMENTS, 2011, 217 : 311 - 317
  • [32] Observational constraints on varying neutrino-mass cosmology
    Geng, Chao-Qiang
    Lee, Chung-Chi
    Myrzakulov, R.
    Sami, M.
    Saridakis, Emmanuel N.
    JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS, 2016, (01):
  • [33] Most constraining cosmological neutrino mass bounds
    Di Valentino, Eleonora
    Gariazzo, Stefano
    Mena, Olga
    PHYSICAL REVIEW D, 2021, 104 (08)
  • [34] Neutrino mass priors for cosmology from random matrices
    Long, Andrew J.
    Raveri, Marco
    Hu, Wayne
    Dodelson, Scott
    PHYSICAL REVIEW D, 2018, 97 (04):
  • [35] Weighing the giants - IV. Cosmology and neutrino mass
    Mantz, Adam B.
    von der Linden, Anja
    Allen, Steven W.
    Applegate, Douglas E.
    Kelly, Patrick L.
    Morris, R. Glenn
    Rapetti, David A.
    Schmidt, Robert W.
    Adhikari, Saroj
    Allen, Mark T.
    Burchat, Patricia R.
    Burke, David L.
    Cataneo, Matteo
    Donovan, David
    Ebeling, Harald
    Shandera, Sarah
    Wright, Adam
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2015, 446 (03) : 2205 - 2225
  • [36] BOUNDS ON NEUTRINO MASSES FROM NEUTRINO DECAY-RATES, COSMOLOGY AND THE SEE-SAW MECHANISM
    HARARI, H
    NIR, Y
    NUCLEAR PHYSICS B, 1987, 292 (02) : 251 - 297
  • [37] RELAXED BOUNDS ON THE DILATION MASS IN A STRING COSMOLOGY SCENARIO
    GASPERINI, M
    PHYSICS LETTERS B, 1994, 327 (3-4) : 214 - 220
  • [38] NEUTRINO PROCESSES IN LEPTON ERA OF UNIVERSE AND HOT BIG BANG COSMOLOGY
    RAY, D
    JOURNAL OF PHYSICS PART A GENERAL, 1972, 5 (01): : L17 - &
  • [39] NEUTRINO COSMOLOGY
    BLUDMAN, SA
    GENERAL RELATIVITY AND GRAVITATION, 1976, 7 (07) : 569 - 582
  • [40] Neutrino cosmology
    Dolgov, AD
    CURRENT TOPICS IN ASTROFUNDAMENTAL PHYSICS: PRIMORDIAL COSMOLOGY, 1998, 511 : 685 - 701