Using Bayesian analysis and maximum entropy to develop non-parametric probability distributions for the mean and variance

被引:0
|
作者
Price, WJ [1 ]
Price, HJ [1 ]
Shafii, B [1 ]
机构
[1] Univ Idaho, Stat Programs, Moscow, ID 83844 USA
关键词
D O I
暂无
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Estimation of the population mean, and variance is generally carried out using sample estimates. Given normality of the parent population, the distribution of sample mean and sample variance is straightforward. However, when normality cannot be assumed, inference is usually based on approximations through the use of the Central Limit theorem. In addition, the data generated from many real populations may be naturally, bounded, i.e. weights, heights, etc. Thus, the unbounded normal probability model may not be appropriate. Utilizing Bayesian analysis and maximum entropy, procedures are developed which produce nonparametric distributions for both the mean and the mean/standard deviation combination. These methods require no assumptions on the form of the parent distribution or the size of the sample and inherently make use of existing bounds.
引用
收藏
页码:53 / 61
页数:9
相关论文
共 50 条
  • [1] Minimally informative prior distributions for non-parametric Bayesian analysis
    Bush, Christopher A.
    Lee, Juhee
    MacEachern, Steven N.
    [J]. JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2010, 72 : 253 - 268
  • [2] Bayesian analysis for mixtures of discrete distributions with a non-parametric component
    Alhaji, Baba B.
    Dai, Hongsheng
    Hayashi, Yoshiko
    Vinciotti, Veronica
    Harrison, Andrew
    Lausen, Berthold
    [J]. JOURNAL OF APPLIED STATISTICS, 2016, 43 (08) : 1369 - 1385
  • [3] Principal component analysis based on non-parametric maximum entropy
    He, Ran
    Hu, Baogang
    Yuan, XiaoTong
    Zheng, Wei-Shi
    [J]. NEUROCOMPUTING, 2010, 73 (10-12) : 1840 - 1852
  • [4] Analysis of methods to estimate the mean and variance of the willingness to pay: parametric and non-parametric case
    Lopez-Santiago, Marco A.
    Meza-Herrera, Cesar A.
    Valdivia-Alcala, Ramon
    [J]. REVISTA CHAPINGO SERIE CIENCIAS FORESTALES Y DEL AMBIENTE, 2017, 23 (02) : 231 - 242
  • [5] GENERALIZED NON-PARAMETRIC ANALYSIS OF VARIANCE PROGRAM
    ROBERGE, JJ
    [J]. BRITISH JOURNAL OF MATHEMATICAL & STATISTICAL PSYCHOLOGY, 1972, 25 (MAY): : 128 - &
  • [6] Variance of non-parametric rock fracture mean trace length estimator
    Zhang, Lianyang
    Ding, Xiaobin
    [J]. INTERNATIONAL JOURNAL OF ROCK MECHANICS AND MINING SCIENCES, 2010, 47 (07) : 1222 - 1228
  • [7] Measuring non-parametric distributions of intravoxel mean diffusivities using a clinical MRI scanner
    Avram, Alexandru V.
    Sarlls, Joelle E.
    Basser, Peter J.
    [J]. NEUROIMAGE, 2019, 185 : 255 - 262
  • [8] A new method for non-parametric multivariate analysis of variance
    Anderson, MJ
    [J]. AUSTRAL ECOLOGY, 2001, 26 (01) : 32 - 46
  • [9] A Bayesian non-parametric approach to survival analysis using polya trees
    Muliere, P
    Walker, S
    [J]. SCANDINAVIAN JOURNAL OF STATISTICS, 1997, 24 (03) : 331 - 340
  • [10] Discrete triangular distributions and non-parametric estimation for probability mass function
    Kokonendji, C. C.
    Kiesse, T. Senga
    Zocchi, S. S.
    [J]. JOURNAL OF NONPARAMETRIC STATISTICS, 2007, 19 (6-8) : 241 - 254