Discrete triangular distributions and non-parametric estimation for probability mass function

被引:50
|
作者
Kokonendji, C. C. [1 ]
Kiesse, T. Senga [1 ]
Zocchi, S. S. [2 ]
机构
[1] Univ Pau & Pays Adour, CNRS, Dept STID, Lab Mathmat Appl,UMR 5142, F-64000 Pau, France
[2] Univ Sao Paulo, ESALQ, Piracicaba, SP, Brazil
关键词
boundary bias; count data; discrete kernel estimator; excess zeros; variable kernel estimate; CROSS-VALIDATION; DENSITY-FUNCTION;
D O I
10.1080/10485250701733747
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Discrete triangular distributions are introduced, in order to serve as kernels in the non-parametric estimation for probability mass function. They are locally symmetric around every point of estimation. Their variances depend on the smoothing bandwidth and establish a bridge between Dirac and discrete uniform distributions. The boundary bias related to the discrete triangular kernel estimator is solved through a modification of the kernel near the boundary. The mean integrated squared errors and then the optimal bandwidth are investigated. We also study the adequate bandwidth for excess zeros. The performance of the discrete triangular kernel estimator is illustrated using simulated count data. An application to count data from football is described and compared with a binomial kernel estimator.
引用
收藏
页码:241 / 254
页数:14
相关论文
共 50 条
  • [1] Action Recognition Based on Non-parametric Probability Density Function Estimation
    Mimura, Yuta
    Hotta, Kazuhiro
    Takahashi, Haruhisa
    ADVANCES IN VISUAL COMPUTING, PT 2, PROCEEDINGS, 2009, 5876 : 489 - 498
  • [2] NON-PARAMETRIC ESTIMATION OF A MULTIVARIATE PROBABILITY DENSITY
    EPANECHN.VA
    THEORY OF PROBILITY AND ITS APPLICATIONS,USSR, 1969, 14 (01): : 153 - &
  • [3] Non-parametric Estimation of Integral Probability Metrics
    Sriperumbudur, Bharath K.
    Fukumizu, Kenji
    Gretton, Arthur
    Schoelkopf, Bernhard
    Lanckriet, Gert R. G.
    2010 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY, 2010, : 1428 - 1432
  • [4] KDETREES: non-parametric estimation of phylogenetic tree distributions
    Weyenberg, Grady
    Huggins, Peter M.
    Schardl, Christopher L.
    Howe, Daniel K.
    Yoshida, Ruriko
    BIOINFORMATICS, 2014, 30 (16) : 2280 - 2287
  • [5] Bayesian analysis for mixtures of discrete distributions with a non-parametric component
    Alhaji, Baba B.
    Dai, Hongsheng
    Hayashi, Yoshiko
    Vinciotti, Veronica
    Harrison, Andrew
    Lausen, Berthold
    JOURNAL OF APPLIED STATISTICS, 2016, 43 (08) : 1369 - 1385
  • [6] NON-PARAMETRIC ESTIMATE OF A PROBABILITY DENSITY-FUNCTION
    KONAKOV, VD
    TEORIYA VEROYATNOSTEI I YEYE PRIMENIYA, 1972, 17 (02): : 377 - &
  • [7] Non-parametric estimation of camera response function
    Chatzis, Ioannis S.
    Dermatas, Evangelos S.
    CIRCUITS AND SYSTEMS FOR SIGNAL PROCESSING , INFORMATION AND COMMUNICATION TECHNOLOGIES, AND POWER SOURCES AND SYSTEMS, VOL 1 AND 2, PROCEEDINGS, 2006, : 385 - 388
  • [8] Wavelets and the theory of non-parametric function estimation
    Johnstone, IM
    PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1999, 357 (1760): : 2475 - 2493
  • [9] Robust Non-Parametric Estimation of Speckle Probability Densities and gCNR
    Arnestad, Havard Kjellmo
    Rindal, Ole Marius Hoel
    Austeng, Andreas
    Nasholm, Sven Peter
    IEEE OPEN JOURNAL OF ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL, 2024, 4 : 89 - 99
  • [10] Non-parametric Estimation of the Number of Zeros in Truncated Count Distributions
    Puig, Pedro
    Kokonendji, Celestin C.
    SCANDINAVIAN JOURNAL OF STATISTICS, 2018, 45 (02) : 347 - 365