Discrete triangular distributions and non-parametric estimation for probability mass function

被引:50
|
作者
Kokonendji, C. C. [1 ]
Kiesse, T. Senga [1 ]
Zocchi, S. S. [2 ]
机构
[1] Univ Pau & Pays Adour, CNRS, Dept STID, Lab Mathmat Appl,UMR 5142, F-64000 Pau, France
[2] Univ Sao Paulo, ESALQ, Piracicaba, SP, Brazil
关键词
boundary bias; count data; discrete kernel estimator; excess zeros; variable kernel estimate; CROSS-VALIDATION; DENSITY-FUNCTION;
D O I
10.1080/10485250701733747
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Discrete triangular distributions are introduced, in order to serve as kernels in the non-parametric estimation for probability mass function. They are locally symmetric around every point of estimation. Their variances depend on the smoothing bandwidth and establish a bridge between Dirac and discrete uniform distributions. The boundary bias related to the discrete triangular kernel estimator is solved through a modification of the kernel near the boundary. The mean integrated squared errors and then the optimal bandwidth are investigated. We also study the adequate bandwidth for excess zeros. The performance of the discrete triangular kernel estimator is illustrated using simulated count data. An application to count data from football is described and compared with a binomial kernel estimator.
引用
收藏
页码:241 / 254
页数:14
相关论文
共 50 条
  • [21] Implicit-PDF: Non-Parametric Representation of Probability Distributions on the Rotation Manifold
    Murphy, Kieran
    Esteves, Carlos
    Jampani, Varun
    Ramalingam, Srikumar
    Makadia, Ameesh
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 139, 2021, 139
  • [22] Robust Localization Method Based on Non-Parametric Probability Density Estimation
    Park, Chee-Hyun
    Chang, Joon-Hyuk
    IEEE ACCESS, 2023, 11 : 61468 - 61480
  • [23] An adaptive approach to non-parametric estimation of dynamic probability density functions
    Pana, Cristian
    Severi, Stefano
    de Abreu, Giuseppe Thadeu Freitas
    PROCEEDINGS OF THE 2016 13TH WORKSHOP ON POSITIONING, NAVIGATION AND COMMUNICATIONS (WPNC), 2016,
  • [24] Non-parametric if and DOA estimation
    Djurovic, I
    Stankovic, L
    SEVENTH INTERNATIONAL SYMPOSIUM ON SIGNAL PROCESSING AND ITS APPLICATIONS, VOL 1, PROCEEDINGS, 2003, : 149 - 152
  • [25] NON-PARAMETRIC ESTIMATION OF SURVIVORSHIP
    MEIER, P
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1955, 50 (270) : 589 - 589
  • [26] On non-parametric maximum likelihood estimation of the bivariate survivor function
    Prentice, RL
    STATISTICS IN MEDICINE, 1999, 18 (17-18) : 2517 - 2527
  • [27] Non-Parametric Estimation of the Renewal Function for Multidimensional Random Fields
    Andriamampionona, Livasoa
    Harison, Victor
    Harel, Michel
    MATHEMATICS, 2024, 12 (12)
  • [28] NON-PARAMETRIC ESTIMATION OF THE HAZARD FUNCTION WITH FUNCTIONAL EXPLANATORY VARIABLE
    Ferraty, Frederic
    Rabhi, Abbes
    Vieu, Philippe
    REVUE ROUMAINE DE MATHEMATIQUES PURES ET APPLIQUEES, 2008, 53 (01): : 1 - 18
  • [29] Non-Parametric Estimation of the Limit Dependence Function of Multivariate Extremes
    B. Abdous
    K. Ghoudi
    A. Khoudraji
    Extremes, 1999, 2 (3) : 245 - 268
  • [30] Generalized EM estimation for semi-parametric mixture distributions with discretized non-parametric component
    Ma, Jun
    Gudlaugsdottir, Sigurbjorg
    Wood, Graham
    STATISTICS AND COMPUTING, 2011, 21 (04) : 601 - 612