Stable metal-organic frameworks based mixed matrix membranes for Ethylbenzene/N2 separation

被引:21
|
作者
Guo, Zhenji [1 ]
Liu, Zhongyuan [1 ]
Zhang, Kai [1 ]
Wang, Wenwen [1 ]
Pang, Jia [2 ]
Li, Zongge [1 ]
Kang, Zixi [3 ,4 ]
Zhao, Dongfeng [1 ]
机构
[1] China Univ Petr East China, Coll Chem Engn, Qingdao 266580, Shandong, Peoples R China
[2] China Univ Petr East China, Coll Sci, Qingdao 266580, Shandong, Peoples R China
[3] China Univ Petr East China, Sch Mat Sci & Engn, Qingdao 266580, Shandong, Peoples R China
[4] Chinese Acad Sci, Fujian Inst Res Struct Matter, State Key Lab Struct Chem, Fuzhou 350002, Fujian, Peoples R China
基金
中国国家自然科学基金;
关键词
Metal-organic frameworks; Mixed matrix membranes; Volatile organic compounds; Ethylbenzene; Permselectivity; VAPOR-PHASE ADSORPTION; XYLENE ISOMERS; SURFACE-AREA; VOC REMOVAL; THIN-FILMS; AIR; PERFORMANCE; MIL-101(CR); ABSORPTION; TOLUENE;
D O I
10.1016/j.cej.2021.129193
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
To remove volatile organic compounds (VOCs) from air, N-2 or other waste gas streams in industrial processes is significant to the environmental protection and human health, as well as gain the opportunity to reuse these valuable chemicals. Mixed matrix membranes (MMMs) based on metal-organic frameworks (MOFs) have been proved to have potential application in this field. In this work, MIL-101 and UiO-66 are selected to construct MMMs for efficient ethylbenzene separation because of following factors: (1) the high ethylbenzene adsorption capacities; (2) the three-dimensional channels with large pore size; and (3) the ideal hydrothermal stability of structures. MIL-101@Pebax and UiO-66@Pebax MMMs have been prepared in an environment-friendly way and evaluated for the ethylbenzene/N-2 separation performance. SEM, TGA, FITR and XRD results indicate that continuous MMMs with different filler loading ratios have been fabricated successfully. The results show that MIL-101@Pebax and UiO-66@Pebax with the MOF loading radio of 20 wt% possess ethylbenzene/N-2 permselectivity of 284 and 100 respectively at 25 degrees C, 0.05 MPa and moderate feed ethylbenzene concentration (1000 ppm), which increased by 10.5 and 3.0 times compared with the pristine Pebax membrane. Effects of upstream pressure, feed concentration, and operating temperature on separation performance have been investigated for ethylbenzene/N-2 separation. Due to the selective adsorption capacity to ethylbenzene, as well as the large pore size of MIL-101(Cr), MIL-101@Pebax can be applied as efficient membrane materials in ethylbenzene capture system for high concentration region at ambient temperature.
引用
收藏
页数:13
相关论文
共 50 条
  • [21] Efficient N2/CH4 separation by mixed matrix membrane with bimetallic metal-organic framework
    Li, Wei
    Wang, Jingyun
    Han, Mengmeng
    Xu, Shanshan
    INORGANIC CHEMISTRY COMMUNICATIONS, 2025, 172
  • [22] Self-healing mixed matrix membranes containing metal-organic frameworks
    Mondal, Prantik
    Cohen, Seth M.
    CHEMICAL SCIENCE, 2022, 13 (41) : 12127 - 12135
  • [23] A review of metal-organic frameworks and polymers in mixed matrix membranes for CO2 capture
    Christensen, Charlotte Skjold Qvist
    Hansen, Nicholas
    Motadayen, Mahboubeh
    Lock, Nina
    Henriksen, Martin Lahn
    Quinson, Jonathan
    BEILSTEIN JOURNAL OF NANOTECHNOLOGY, 2025, 16 : 155 - 186
  • [24] Defect Engineering in Metal-Organic Frameworks Towards Advanced Mixed Matrix Membranes for Efficient Propylene/Propane Separation
    Lee, Tae Hoon
    Jung, Jae Gu
    Kim, Yu Jin
    Roh, Ji Soo
    Yoon, Hee Wook
    Ghanem, Bader S.
    Kim, Hyo Won
    Cho, Young Hoon
    Pinnau, Ingo
    Park, Ho Bum
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2021, 60 (23) : 13081 - 13088
  • [25] Screening of Hypothetical Metal-Organic Frameworks for Xylene Isomers and Ethylbenzene Separation
    Halder, Prosun
    Singh, Jayant K.
    ENERGY & FUELS, 2023, 37 (03) : 2230 - 2236
  • [26] Water stable metal-organic frameworks for gas separation
    Zhang, Xiaoping
    Shi, Wei
    Cheng, Peng
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2016, 251
  • [27] Metal-organic framework based mixed matrix hydrogel membranes for highly efficient gas separation
    Tian, Lei
    Sun, Yuxiu
    Guo, Xiangyu
    Qiao, Zhihua
    Zhong, Chongli
    ADVANCED MEMBRANES, 2021, 1
  • [28] Recent developments in Metal-organic framework-based mixed matrix membranes for hydrogen separation
    Wu, Qian
    He, Xinping
    Cui, Chenyi
    Qi, Baojin
    Wei, Jinjia
    SEPARATION AND PURIFICATION TECHNOLOGY, 2025, 354
  • [29] Luminescent Metal-Organic Framework Mixed-Matrix Membranes from Lanthanide Metal-Organic Frameworks in Polysulfone and Matrimid
    Dechnik, Janina
    Muehlbach, Friedrich
    Dietrich, Dennis
    Wehner, Tobias
    Gutmann, Marcus
    Luehmann, Tessa
    Meinel, Lorenz
    Janiak, Christoph
    Mueller-Buschbaum, Klaus
    EUROPEAN JOURNAL OF INORGANIC CHEMISTRY, 2016, (27) : 4408 - 4415
  • [30] Matrimid® 5218 based mixed matrix membranes containing metal organic frameworks (MOFs) for helium separation
    Akbari, Ali
    Karimi-Sabet, Javad
    Ghoreishi, Seyyed Mohammad
    CHEMICAL ENGINEERING AND PROCESSING-PROCESS INTENSIFICATION, 2020, 148