Valuation of forward start options under affine jump-diffusion models

被引:4
|
作者
Vidal Nunes, Joao Pedro [1 ]
Viegas Alcaria, Tiago Ramalho [2 ]
机构
[1] BRU UNIDE, ISCTE IUL Business Sch, Edificio 2,Gabinete D531, P-1600189 Lisbon, Portugal
[2] ISCTE IUL Business Sch, Lisbon, Portugal
关键词
C63; G13; Forward start options; Jump-diffusion processes; COS approximation; Gaussian quadratures; Stochastic volatility and interest rates; Discrete Fourier transform; STOCHASTIC VOLATILITY MODELS; INTEREST-RATES; SIMULATION; INVERSION;
D O I
10.1080/14697688.2015.1049200
中图分类号
F8 [财政、金融];
学科分类号
0202 ;
摘要
Under the general affine jump-diffusion framework of Duffie et al. [Econometrica, 2000, 68, 1343-1376], this paper proposes an alternative pricing methodology for European-style forward start options that does not require any parallel optimization routine to ensure square integrability. Therefore, the proposed methodology is shown to possess a better accuracy-efficiency trade-off than the usual and more general approach initiated by Hong [Forward Smile and Derivative Pricing. Working paper, UBS, 2004] that is based on the knowledge of the forward characteristic function. Explicit pricing solutions are also offered under the nested jump-diffusion setting proposed by Bakshi et al. [J. Finance, 1997, 52, 2003-2049], which accommodates stochastic volatility and stochastic interest rates, and different integration schemes are numerically tested.
引用
收藏
页码:727 / 747
页数:21
相关论文
共 50 条
  • [21] APPROXIMATE HEDGING OF OPTIONS UNDER JUMP-DIFFUSION PROCESSES
    Mina, Karl Friedrich
    Cheang, Gerald H. L.
    Chiarella, Carl
    [J]. INTERNATIONAL JOURNAL OF THEORETICAL AND APPLIED FINANCE, 2015, 18 (04)
  • [22] Forward start options under Heston affine jump-diffusions and stochastic interest rate
    Ahlip, Rehez
    Park, Laurence A. F.
    Prodan, Ante
    Weissenhofer, Stephen
    [J]. INTERNATIONAL JOURNAL OF FINANCIAL ENGINEERING, 2021, 8 (01)
  • [23] Reduced Order Models for Pricing American Options under Stochastic Volatility and Jump-Diffusion Models
    Balajewicz, Maciej
    Toivanen, Jari
    [J]. INTERNATIONAL CONFERENCE ON COMPUTATIONAL SCIENCE 2016 (ICCS 2016), 2016, 80 : 734 - 743
  • [24] Efficient pricing of options in jump-diffusion models: Novel implicit-explicit methods for numerical valuation
    Maurya, Vikas
    Singh, Ankit
    Yadav, Vivek S.
    Rajpoot, Manoj K.
    [J]. MATHEMATICS AND COMPUTERS IN SIMULATION, 2024, 217 : 202 - 225
  • [25] Displaced Jump-Diffusion Option Valuation
    Camara, Antonio
    Krehbiel, Tim
    Li, Weiping
    [J]. JOURNAL OF DERIVATIVES, 2009, 17 (02): : 41 - 58
  • [26] Robust spectral method for numerical valuation of european options under Merton's jump-diffusion model
    Pindza, E.
    Patidar, K. C.
    Ngounda, E.
    [J]. NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2014, 30 (04) : 1169 - 1188
  • [27] Efficient numerical valuation of European options under the two-asset Kou jump-diffusion model
    In'T Hout, Karel J.
    Lamotte, Pieter
    [J]. JOURNAL OF COMPUTATIONAL FINANCE, 2023, 26 (04) : 101 - 137
  • [28] Adaptive Radial Basis Function Methods for Pricing Options Under Jump-Diffusion Models
    Ron Tat Lung Chan
    [J]. Computational Economics, 2016, 47 : 623 - 643
  • [29] Finite Volume Method for Pricing European and American Options under Jump-Diffusion Models
    Gan, Xiao-Ting
    Yin, Jun-Feng
    Guo, Yun-Xiang
    [J]. EAST ASIAN JOURNAL ON APPLIED MATHEMATICS, 2017, 7 (02) : 227 - 247
  • [30] An RBF-FD method for pricing American options under jump-diffusion models
    Haghi, Majid
    Mollapourasl, Reza
    Vanmaele, Michele
    [J]. COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2018, 76 (10) : 2434 - 2459